2017年7月17日 星期一

『臺灣博物』:智能可視保護硬膜仿生石鼈眼睛

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

美國科學家研究西印度石鼈(Acanthopleura granulata)的貝殼成分、結構、和功能,尤其是眼睛的光學系統,得知眼睛與貝殼均由生物礦化(biomineralization)的碳酸鈣(CaCO3)構成,因眼睛所含晶粒較大且以特定方式排列,不僅堅硬,還可監測周圍環境,看清楚超過2公尺距離的20公分魚或鳥等天敵,以硬殼和緊密吸貼岩石方式抵抗。研究團隊根據此結果測試及模擬其視覺解析度、辨識影像、和機械性能,並創建模型,未來將依據西印度石鼈貝殼表面三種構造模型,開發新型仿生智能可視保護硬膜,這是一種感光清晰和具強韌保護功能的新材料,有不怕水、不怕撞、不怕摔特性,可根據晶形結構、晶粒尺寸、排列規則性和方向性變化改變為眼睛或鎧甲功能,除能製造眼鏡、眼罩、手機、或安全帽等需要視野清楚的商業產品外,還可研發防彈頭盔、護盾、防爆盾牌、或坦克車外殼等軍事用途,未來甚至能用於機器人皮膚中多視覺感應成像。這項研究成果由美國麻省理工學院(MIT)奧蒂茲(Christine Ortiz)教授領導跨領域研究團隊,成員包括哈佛大學(Harvard University)、卡夫利生物奈米科學與技術研究所(Kavli Institute for Bionano Science and Technology)、南卡羅萊納大學(University of South Carolina)、及美國能源部阿貢國家實驗室(Argonne National Laboratory)於2015年11月在《科學》(Science)期刊發表。
仿生石鼈眼睛的智能可視保護硬膜可變換為眼睛或鎧甲功能(繪製者:王美乃)。
西印度石鼈是夜行性原始貝類,身體扁平呈卵圓形,屬於軟體動物門(Mollusca)多板綱(Polyplacophora)新石鼈目(Neoloricata)石鼈科(Chitonidae),分布於佛羅里達州南部至墨西哥,往南到巴拿馬和西印度群島,棲息於潮間帶岩石或珊瑚礁的石縫或凹洞中,取食藻類等植物。貝殼僅生長於身體背面,由八片覆瓦狀排列的岩石般堅硬殼板組成,殼長約3-7公分,殼周圍有一圈稱為環帶的外套膜,身體腹面幾乎被用來爬行或吸附在岩石上的寬扁肉足佔滿;由於頭部和身體完全被殼板覆蓋,眼睛長在殼板邊緣,形成約一千個直徑小於0.1公釐的黑色斑點,較舊的眼睛接近殼板中心,這些眼睛難免遭到侵蝕或損傷,可隨貝殼生長而不斷更新,維持一千隻功能正常的眼睛同時運行,可提高對天敵或障礙的靈敏度、信噪比(指正常訊號與雜訊的比值,比值愈高效果愈佳)、及將假警報與真實威脅區分的能力。
西印度石鼈(Acanthopleura granulata)的眼睛和貝殼成分相同(圖片來源:歐陽盛芝)。
研究團隊觀察西印度石鼈的貝殼是透過有機分子在奈米尺度下,精確控制體內無機礦物結晶的生物礦化形成,表面可區分為三種突起構造,均由碳酸鈣以文石(aragonite,又稱霰石)晶型結構組成。第一種分布最廣,直徑約200微米(μm=10-6m)、高度約100微米的堅硬鎧甲突起,晶粒較小、排列不規則且方向不一致;另外兩種微突起位於鎧甲突起山峰間的平坦山谷內,其中第二種直徑約50微米的黑色突起,是被外徑86 ± 4微米含褐黑素(pheomelanin)暗區包圍的眼睛,可感光和辨識影像,表層為厚度5微米的角膜,然後是厚度38±2微米的水晶體,晶粒較大(平均粒徑約10微米)、排成一列且方向一致,能讓更多光線通過,並使光散射最小化以增加視覺解析度,更下方為非晶質(amorphous)層,分為有機質組成的L1層和含鈣L2層,最下面是深、寬為56±776±5微米的梨形專用眼室,體積是巨微眼腔室的5倍;第三種是近似眼睛大小的有孔突起,為可吸收光線的巨微眼(megalaesthetes),內具寬度約40微米的圓柱形腔室,眼睛和巨微眼的視網膜由100個感光細胞組成,下接視神經管,兩者的腔室內都有鈣化物質環繞視網膜成C形口袋,並藉著稱為微微眼(micraesthetes)的大量微小感覺孔從腔室分支到殼表。

研究團隊以魚來模擬和測試西印度石鼈一隻眼睛的成像力和解像力,發現水晶體能聚焦圖像傳送給視網膜,投射出魚的可辨識影像,證明西印度石鼈可以看清楚20公分物體的最遠距離約為2公尺。再對貝殼施加1牛頓(N,使質量1公斤物體的加速度達每平方秒1公尺時所需的力量)的力進行奈米壓痕測試,結果鎧甲突起區僅造成相對較小的永久變形,表現較大的機械完整性,但眼睛區卻明顯斷裂,平均載荷僅0.84±0.11牛頓;巨微眼區呈現微裂紋,表示一殼多用的構造仍會降低防禦強度,必須適度取得平衡。西印度石鼈經長期演化,已採用以較高大的鎧甲突起保護躲藏其中的眼睛和巨微眼、透過厚且堅硬的底層來彌補整個表層的機械弱點、大量的眼睛和巨微眼有助於減少殼體損傷等策略來補償。因此研究團隊創建電腦模型,將來使用碳酸鈣或其他種成分的相同材料,依需求改變晶形結構、晶粒尺寸、排列規則性和方向性變化即可改變使用功能,開發出如新型仿生智能可視保護硬膜等相關產品。

(以上新聞編譯自2015年11月20日發行之Science期刊)
(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/7/13

本單元學術名稱:生物醫農>動物學
標籤:智能可視保護硬膜仿生石鼈眼睛

資料來源:

Li, L., M. J. Connors, M. Kolle, G. T. England, D. I. Speciser, X. Xiao, J. Aizenberg, and C. Ortiz. 2015. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science, 350(6263): 952-956 (+ 27 pp. Supplementary Materials).

延伸學習:

Chandler. D. L. 2015. Armor plating with built-in transparent ceramic eyes: tiny sea creatures feature transparent optical systems as tough as their shells. MIT News, November 19, 2015.

de Lazaro, E. 2015. Chitons see with ceramic eyes, new research show. Sci-News / Biology, November 23, 2015.

Pennisi, E. 2015. Crystalline eyes of chitons inspire materials scientists: mollusk makes hundreds of eyes from shell mineral. Science, 350(6263): 899.

2017年7月10日 星期一

『臺博新知』:機械手臂吸頭仿生變色龍舌頭

賴婉婷/國立臺灣博物館研究組
歐陽盛芝/國立臺灣博物館
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士

歐洲科學家模仿高冠變色龍(Chamaeleo calyptratus)彈舌捕食和黏附機制,已研發出稱為FlexShapeGripper的仿生機械手臂吸頭,能像變色龍舌頭吸抓各種尺寸和類型物體、且不會造成物體受損,也可依設定流程吸取後重覆相同動作,最後放下數個不同形狀物件,可應用於農業的蔬果分級、資源回收業的廢棄物分類回收、提高吸取準確性與縮短流程的工業組裝、執行精密的自動化組裝或處理小零件等任務,未來還可開發為特定功能的機器人,從事較細緻和精確的客製化服務,並能依需求調整控制抓握和吸附程度,達到最大經濟效益。

仿生高冠變色龍舌頭的機械手臂吸頭可吸抓各種物體(繪製者:王美乃)。
高冠變色龍是日行性樹棲變色龍,最大特徵是頭頂具有由骨板構成的高聳頭冠,屬於爬蟲綱(Reptilia)有鱗目(Squamata)避役科(Chamaeleonidae),原產於阿拉伯半島的葉門和沙烏地阿拉伯的高原、山脈、和山谷。雜食性,以昆蟲為主食,也會取食植物吸收水分。變色龍的舌頭長度大於體長,捕食時會以超過F16戰鬥機5倍的加速度將舌頭瞬間彈射至體長2倍遠的距離黏住獵物,舌尖中間在碰到昆蟲前會停住回縮,舌頭邊緣繼續前進,讓舌頭適應各種獵物的尺寸和形狀、牢固地包圍,並分泌唾液將昆蟲黏附在舌頭上,從舌頭伸出到捕獲獵物的時間僅0.04-0.07秒,能黏獲重達本身體重30%的獵物回縮入口,當獵物想逃生時,就像釣魚線一樣拉扯、反而黏住更多接觸面積;舌頭表面粗糙度則必須自我調整,與獵物表面接觸形成物理交聯(physical crosslinks),並以類似橡膠吸盤的吸附機制進行強烈黏附,才能在高速彈射下立即黏住,具有不同體積和重量的獵物可在少於十分之一秒的舌頭縮回口中期間不會中途掉落。
變色龍的舌頭很長,能快速彈射黏住捕獲昆蟲進食(圖片來源:歐陽盛芝)。
美國布朗大學(Brown University)安德森(Christopher V. Anderson)博士因此比較55種變色龍取食蟋蟀時彈出舌頭的機制,得知拉伸彈性組織並使用其後座力驅動的力量,比收縮肌肉更直接更快速釋放能量,而將輸出功率放大,這種功率放大機制可讓高冠變色龍舌頭的峰值加速度達每平方秒514公尺,肌肉質量的峰值功率達每公斤3,480瓦特(W/kg);55種變色龍中,最高的舌頭峰值加速度可達每平方秒2,590公尺(m/sec2),肌肉質量的峰值功率最大達每公斤14,040瓦特,並且體型愈小其性能更好,舌頭彈射速度愈快,彈射距離愈長,最遠可達體長的2.5倍。

比利時科學家達曼(Pascal Damman)教授領導蒙斯大學(Université de Mons)和法國國立自然史博物館(Muséum national d’Histoire naturelle)合組研究團隊,研究結果顯示變色龍黏性唾液黏住獵物的機制、比高速彈舌機制對捕獲獵物更重要。研究團隊以直徑3.5公釐、質量0.175公克的不鏽鋼滾珠,用自由落體方式掉落在一塊表面沾塗高冠變色龍唾液薄層的小斜坡上進行實驗。當滾珠接觸到唾液時,係以每秒6.58±0.06公釐的速度滾動,再依滾動距離計算其黏度為0.4±0.1帕斯卡·秒(Pa·s = 10P,kg/m/s),因此計算出唾液黏度是人類(約10-3帕斯卡·秒)的400倍;他們另以高速攝錄高冠變色龍的捕食動作,係先估算距離後把舌頭慢慢從顎突出,加速肌肉收縮、並擠壓舌頭最內層的蛋白質纖維彈性鞘套,快速釋放能量彈出舌頭,以恆定速度延伸,撞到獵物前停止,黏到獵物即加速縮回口中,最後恢復原位,即使獵物較大,也能瞬間被唾液黏在舌頭上捕獲,黏度愈高則獵物被黏住的面積愈大,為相當有效的獵捕利器。研究成果於2016年6月在《自然物理學》(Nature Physics)期刊發表。

德國飛斯妥公司(Festo AG & Co. KG)仿生高冠變色龍彈舌捕食和黏附機制,研發出仿生機械手臂吸頭FlexShapeGripper,由挪威奧斯陸和阿克斯胡斯大學(Oslo and Akershus University)研究生蒙格紹(Jon Eirik Mangschau)協助設計,利用材料表面間產生高靜摩擦力形成的強抓吸力、替代黏度高的變色龍唾液,具有可旋轉彎折的關節,堅硬的機械手臂頂端是柔軟靈活、內部注水的矽膠帽,內有以活塞隔開的雙動氣缸,其中一個充滿壓縮空氣,另一個充滿水、由彈性矽膠製成仿生變色龍舌頭。

操作時透過處理系統引導矽膠帽接觸物體,將氣缸的氣體排放、打開活塞,造成含水氣缸自動向內拉,使矽膠帽能像變色龍舌頭般配合物體尺寸和形狀,柔性抓取各種物體並緊緊抓吸住,無論是眼鏡、鋼珠、咖啡杯、鑰匙等都能緊密纏繞包覆,依後進先出原則拾取、收集、和放下一個或幾個在相同生產線中不同形狀的物體,無須手動轉換流程操作或更換其他款機械手臂抓具,透過不同比例的閥門開關可精確控制矽膠帽的抓力和變形,且所有機制都由空氣觸發,無須額外提供能量,已成為可量產的經濟性商品。

(以上新聞編譯自2016年6月20日發行之Nature Physics期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/7/6

本單元學術名稱:生物醫農>動物學
標籤:機械手臂吸頭仿生變色龍舌頭

資料來源:

Brau, F., D. Lanterbecq, L.-N. Zghikh, V. Bels, and P. Damman. 2016. Dynamics of the prey prehension by chameleons through viscous adhesion: a multidisciplinary approach. Nature Physics, 12(10): 931-935.

延伸學習:

Anderson, C. V. 2016. Off like a shot: scaling of ballistic tongue projection reveals extremely high performance in small chameleons. Scientific Reports, 2016(12): 18625-1-9 (+ 7 pp. Supplementary Materials).

Festo AG & Co. KG. 2017. FlexShapeGripper: gripping modelled on a chameleon’s tongue. Festo Brochure (Visit date: 2017/06/12).

Radford, T. 2016. Lickety-split: smallest chameleons have fastest tongues. The Guardian / Science, January 4, 2016.

Veiled chameleon. 2017. Wikipedia, https://en.wikipedia.org/wiki/Veiled_chameleon (Visit date: 2017/06/12).


2017年7月3日 星期一

『臺博新知』:微型機械手仿生大壁虎足趾剛毛

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

美國與中國的科學家組成跨國團隊,研究大壁虎(Gekko gecko)足趾腹面剛毛(setae)的顯微構造、運動方式、黏附和自潔機制,發明仿生微型機械手(micromanipulator),具有超強黏附和自我清潔能力,不僅可執行微米尺度的自由操控,輕易達成從各種類型表面挑取微粒、移動、放入特定位置或容器,或是在產品製程中排組複雜圖案等精確組裝動作,還能根據需求設計製造特定形狀微球表面,並具再回收再利用特性。除可作為螺絲釘、膠帶、磁帶、繃帶等智能和防污表面外,還能開發攀爬機器人、微/奈米組裝、水中細胞操作技術、生物醫學裝置、和微機電系統裝置等,廣泛應用於能源、航空、化工、機械製造等領域,有發展為強大顯微操作工具的潛力。研究結果由北德克薩斯大學(University of North Texas)夏振海(Zhenhai Xia)教授和丹佛大學(University of Denver)、阿克隆大學(The University of Akron)、凱斯西儲大學(Case Western Reserve University)、北京中國石油大學、北京清華大學、陝西西北工業大學於2015年11月共同發表在《自然通訊》(Nature Communications)期刊。
仿生大壁虎足趾剛毛的微型機械手可自潔和超強黏附(繪製者:王美乃)。
大壁虎俗稱大守宮、蛤蚧、蛤蟹、仙蟾等,主要分布於亞洲東南部和南部,為棲息在岩洞或樹洞的夜行性動物,以昆蟲和其他小型動物為食。體長(吻肛長)約20-30公分,屬於爬蟲綱(Reptilia)有鱗目(Squamata)壁虎科(Gekkonidae)。前、後足共4隻,每隻足具5個足趾,趾腹具有10幾道排列整齊的脊狀皮瓣皺摺,成排長著稱為剛毛(setae)的角質毛(keratinous hairs),每隻足掌面積約227平方公釐(mm2),含有約50至數百萬根剛毛,排列密度為每平方公釐約14,400根剛毛,剛毛長約110微米(µm=10-6m)、直徑5微米,為人類頭髮直徑的十分之一左右;每根剛毛末端再分叉成100-1,000根刮勺狀構造的匙突(spatulae),長、寬均約200奈米(nm=10-9m)、厚約10奈米,頂端的匙突墊(spatula pad)直接與物體表面接觸,底部則與剛毛連接。
蓋勾亞守宮(Rhaoodactylus auriculatus)與大壁虎同科,趾腹也有剛毛(圖片來源:林士傑)。
大壁虎能在牆壁等垂直壁面來去自如,倒掛停留在天花板上不會掉落,原理係利用剛毛結構增強凡得瓦力(van der Waals forces),具有能支撐自身體重好幾倍的黏附力。研究團隊測試單根剛毛的黏附力約20微牛頓(µN=10−6N,1牛頓是使質量1公斤物體的加速度達每平方秒1公尺時所需的力量),可支撐一隻螞蟻體重,因此100萬根剛毛就能產生20牛頓的黏附力、支撐20公斤重量,而大壁虎體重只有幾十到100多公克,自身重力約3牛頓,故能無視地心引力,僅靠單足即可牢牢黏附。他們另外測試單根剛毛在不同表面的脫附力與分離速度,發現剛毛與物體表面接觸時,先施加15微牛頓的垂直力,使剛毛沿表面滑動約5微米,就會產生高達200微牛頓的剪切力量,並依然保持黏附。

由於大壁虎步行時的離地動作是先將足趾尖朝外翻,再將足掌外翻離開,因此能使足趾腹面剛毛與物體表面瞬間迅速分離。只要彎曲足趾就可變化剛毛的匙突和匙突墊間的夾角,形成黏附或分離,當夾角小於30度時會增強黏附力和摩擦力;當反向彎曲至近90度時,即可在十幾毫秒(ms=10-3s)內離開。此外,匙突墊的幾何形狀也是能快速離開接觸表面的因素之一,滴水試驗也證實濕度不會影響剛毛的黏附力。

研究團隊首度發現大壁虎的動態自潔機制,其可藉著足趾尖外翻時產生的瞬間分離速度和剪切速度會使塵垢脫落,四足運動時隨時自動高效率自我清潔,保持足趾乾淨,以具有最佳黏附力。他們以保麗龍(聚苯乙烯)、二氧化矽、氧化鋁三種材質製造平均直徑10微米的塵垢微球,散佈在玻璃、石英玻璃、雲母、藍寶石、保麗龍、鐵氟龍等表面上測試,結果發現塵垢微球以每秒約1,000-10,000 微米(μm/s)速度從剛毛的匙突墊甩落;增加分離速度和剪切速度會增強匙突黏附力。

因此研究團隊模仿大壁虎足趾剛毛結構,將直徑10微米、長度140微米的玻璃纖維,一端黏在原子力顯微鏡的懸臂頂端固定,以聚焦離子束(FIB)將另一端切割成匙狀,製成人造剛毛進行實驗及建模;再將一端有切割墊、直徑10微米、長度150微米的聚酯纖維黏在原子力顯微鏡的懸臂頂端固定,把單層石墨烯以環氧樹脂黏到切割墊上緩慢固化,重覆三次逐層黏合成厚5奈米、具三層石墨烯匙突墊的單根仿生微型機械手,甚至比天然剛毛具有更強的黏附能力和自潔功能。在小於每秒1微米的低分離速度和1.3微牛頓的相對高預負載條件時,塵垢微球的分離率為0-40%,但在約每秒1,000微米的垂直分離速度和約0.4微牛頓的低預負載時,分離率會迅速上升達約80%;當分離速度較低時,微型機械手可拾取微球,達高分離速度時即放下微球,因此調整分離速度就能夠控制動作,並能將直徑1-20微米的微尺寸微粒排列和精確組裝成特定圖案。

仿生微型機械手的耐久性測試則顯示,在1赫茲(Hz,每秒的週期運動次數)頻率和1微牛頓預載荷時,重複十萬次在玻璃基板進行黏附和脫落動作,功能仍然正常。石墨烯層還可顯著增強黏附能力、表面順應性、和接觸面積,產生可逆和可調整的黏附性,作為乾燥和潮濕環境下的各種應用。即使石墨烯匙突墊發生損壞,可再黏貼新的石墨烯層修復使用,因此未來將可廣泛應用。

(以上新聞編譯自2015年11月20日發行之Nature Communications期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/6/29

本單元學術名稱:生物醫農>動物學
標籤:微型機械手仿生大壁虎足趾剛毛

資料來源:

Xu, Q., Y. Wan, T. S. Hu, T. X. Liu, D. Tao, P. H. Niewiarowski, Y. Tian, Y. Liu, L. Dai, Y. Yang, and Z. Xia. 2015. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015(6): 8949-1-9 (+ 21 pp. Supplementary Information).

延伸學習:

大壁虎。2017。維基百科,https://zh.wikipedia.org/wiki/%E5%A4%A7%E5%A3%81%E8%
99%8E(瀏覽日期:2017/06/09)。

Autumn, K., Y. A. Llang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full. 2000. Adhesive force of a single gecko foot-hair. Nature, 405 (6787): 681-685.

Hansen, W. R. and K. Autumn. 2005. Evidence for self-cleaning in gecko setae. PNAS (Proceedings of National Academy of Sciences), 102(2): 385-389.

Sealy, C. 2016. Self-cleaning gecko feet inspire micromanipulator. Materials Today / Biomaterials / News, February 26, 2016.

2017年7月1日 星期六

『臺博新知』:仿生螞蟻(四):能飛會停兼爬牆的迷你機器人「SCAMP」

歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館
賴婉婷/國立臺灣博物館研究組

集結史丹佛大學十多年來的仿生、乾黏附、攀爬機器人、停棲(perching)等多項研究成果,克高斯基(Mark Cutkosky)教授的研究團隊今(2016)年3月在《科技綜覽》(IEEE Spectrum)雜誌,由博士生波普(Morgan Pope)公布一款稱為「史丹佛攀爬與飛行操控平台」(Stanford Climbing and Aerial Maneuvering Platform,簡稱SCAMP)的新型四軸飛行機器人,採用模仿螞蟻體型及團隊模式、壁虎足底剛毛結構、和尺蠖步態(gait)所開發,可負重超過體重百倍在垂直光滑牆面移動的9公克迷你機器人為主體,裝設四旋翼飛機(quadrotors),再添加仿生啄木鳥、盲蛛(daddy longlegs)、和蟑螂的構造,首創具備結合飛行、降落、停棲、攀爬等功能,當攀爬或停棲失敗時,還能立即恢復再次嘗試。算是既能飛上天空,又能在垂直牆壁降落,用有微棘刺的足抓住牆面停棲和攀爬,若不小心滑落還能夠再爬上牆的超級機器人。
仿生四軸飛行機器人SCAMP有飛行、降落、停棲、攀爬等功能(繪製者:黃正文)。
這款多功能仿生迷你機器人屬於微型飛行器(Micro Aerial Vehicles,簡稱MAVs),透過機載感應器和電腦控制,因體型很小,與空氣的相互作用較大,對接觸表面的黏附力更高,遭受碰撞時更穩定,可很快調整方向,且容易找到降落地點。但因電池容量小,目前僅能在小範圍內維持3分鐘飛行,但若中途停棲,續航力可長達2小時至數天。
黑棘蟻(Polyrhachis dives)會攀爬到植物上活動覓食(圖片來源:賴景陽)。
四軸飛行器(quadcopters)就是平時通稱的無人機(Drone),也稱為四旋翼飛機,受電池容量和小規模飛行的物理性限制,續航力很短,能準確安全降落的機率很低,消費型無人機航程僅能維持在30分鐘以內,若安裝額外的感測器或視訊攝影鏡頭,會因耗電而縮短飛行時間及距離,失去動力時可能突然墜落,造成安全問題及經濟損失。因此無人機的停棲和降落技術仍存在許多難題,而此款SCAMP已達成能安全降落,延長操作時間從數小時至數天,並在靜止時執行數據收集或通訊任務。

SCAMP是將可負重超過積體重量百倍在垂直光滑牆面移動攀爬的9公克迷你機器人,加裝德國製造的小型蜂鳥四旋翼飛機(Hummingbird quadrotor)用以飛行,另模仿啄木鳥啄木時用來平衡的尾巴,在機器人後端加裝一個剛性尾巴平衡重量,有利於降落後平穩停棲。由於在戶外要找到合適降落地點的機率很小,SCAMP的攀爬能力有助於在垂直牆壁降落,迷你機器人會先以尾部飛向牆壁,頭部朝上,當機載加速度感應器(onboard accelerometers)檢測到撞擊,就會開啟回轉軸(rotors)使推力最大化,利用空氣動力推動機體壓在牆面上,讓機體和長足向牆壁黏附,直到撞擊振動平息,然後足的微棘刺(microspines)會接觸嚙合牆面,SCAMP的回轉軸關閉並開始攀爬。

迷你機器人SCAMP需要可操作性而非負重能力,因此修改設計讓足更細長且步幅更大;其攀爬機制重量僅有11公克,一雙細長輕巧的長足以碳纖維(carbon fiber)和高強輕質彈性線(Spectra,PE編織線)模仿盲蛛的長足製造,重量輕、且功率損耗低,有助於飛向和遠離牆面,長足末端底座加裝含數十萬個微形錐體(microwedge)玻璃纖維黏片和模仿蟑螂足上棘刺(spines)所研發「微棘刺」(microspines)結構,確保SCAMP能黏附和攀爬任何材質表面;步幅從每步1.2公分增加到9公分,由高扭矩密度(torque-density)伺服器驅動,另一個更小的伺服器則驅動定向黏附和離開接觸表面,在兩足間交替負載荷重策略。機器人的碳纖維框架另一端連接兩個輪子和一個具黏片和微棘刺結構的起飛臂,均能輔助攀爬功能。微棘刺是一種硬質鋼倒鉤盤形裝置,不僅增強吸附力,並可扣住混凝土般堅硬粗糙表面垂直攀爬,甚至能讓機器人像蝙蝠一樣倒吊在天花板上。

因粗糙的水泥或灰泥牆面不像平滑的玻璃窗那樣表面平整,且不可預測,但具有攀爬能力的SCAMP,能更準確飛抵目的地且精準的重新定位;若因故喪失黏附力向下跌落時,加速度感應器偵測到突發的垂直加速度,就會暫時開啟回轉軸,將機器人推回牆面,重新穩定後再恢復攀登或至固定位置停棲;即使遭遇不適合飛行的強風時,也能攀爬到預定地點降落、停棲、和執行任務。

四軸飛行器能到達人類不宜或不能去的地方,2011年3月11日日本311大地震導致福島核災後,科學家就曾組成無人機群進入位於仙臺的東北大學(Tohoku University)校區內進行災後地圖繪製及損失評估作業。因此可以預期新型四軸飛行機器人的應用將更為廣泛,不但可在戰場或救災中發揮作用,也可搭載熱成像儀、高解析度畫質影像採集設備等精密儀器,實現遠端實況監控,並可立刻傳回現場圖像至指揮中心,提供即時的空中全方位立體影像,利於現場指揮員作出更為有利的決策依據。許多任務其實無須機器人持續飛行或運動,只需停棲狀態即可達成,例如在災區定點作為無線電中繼站執行通訊任務,或在定點收集、拍攝、紀錄相關資料或數據等,甚至在不利飛行的天氣時可暫停運作,待天氣好轉時再恢復功能。

研究團隊希望體型小、可靈活執行任務的迷你機器人SCAMP,未來也能像螞蟻發揮團隊合作的集群(swarm)功能,即使其中有幾個機器人失敗,可繼續工作而不會影響成果,甚至能完成單一個體無法勝任的任務。

(以上新聞編譯自2016年3月16日發行之IEEE Spectrum雜誌等)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/5/18

本單元學術名稱:生物醫農>動物學
標籤:仿生螞蟻(四):能飛會停兼爬牆的迷你機器人「SCAMP」

資料來源:

Pope, M. 2016. Stanford's flying, perching SCAMP robot can climb straight up walls. IEEE Spectrum / Automaton / Robotics / Drones, March 16, 2016.

Pope, M. 2016. SCAMP: the Stanford climbing and aerial maneuvering platform. Biomimetics and Dexterous Manipulation Laboratory / Stanford / Main / SCAMP, April 7, 2016.

延伸學習:

Asbeck, A. T., S. Kim, M. R. Cutkosky, W. R. Provancher, and M. Lanzetta. 2006. Scaling hard vertical surfaces with compliant microspine arrays. International Journal of Robotics Research, 25(12): 1165-1179.

Hawkes, E. W., D. L. Christensen, and M. R. Cutkosky. 2015. Vertical dry adhesive climbing with a 100x bodyweight payload. in 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE 2015, 3762-2769.

Michael, N., S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohho, E. Takeuchi, and S. Tadokoro. 2012. Collaborative mapping of an earthquake-damaged building via ground and aerial robots. Journal of Field Robotics, 29(5): 832-841.

Spenko, M. J., G. C. Haynes, J. A. Saunders, M. R. Cutkosky, and A. A. Rizzi. 2008. Bio.logically inspired climbing with a hexapedal robot. Journal of Field Robotics, 25(4-5): 223-242.

Thomas, J., G. Loianno, M. Pope, E. W. Hawkes, M. A. Estrada, H. Jiang, M. R. Cutkosky, and V. Kumar. 2015. Planning and control of aggressive maneuvers for perching on inclined and vertical surfaces. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5C: V05CT08A012-1-10.

Thomas, J., M. Pope, G. Loianno, E. W. Hawkes, M. A. Estrada, H. Jiang, M. R. Cutkosky, and V. Kumar. 2016. Aggressive flight with quadrotors for perching on inclined surfaces. Journal of Mechanisms and Robotics, 8(5): 051007-1-10.

2017年6月26日 星期一

『臺博新知』:醫療用仿生酶界面三網路水凝膠

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

壓敏膠(pressure-sensitive adhesive)是在壓力下產生黏性,失壓後不留殘膠的黏膠。美國猶他大學(University of Utah)斯圖爾特(Russell J. Stewart)教授領導的研究團隊研究沼石蛾(Hesperophylax occidentalis)幼蟲蟲絲之黏附機制,研發出安全無毒性的醫療用仿生壓敏膠,這種仿生酶界面三網路水凝膠具有優良的生物相容性、黏結性、反覆揭貼性、藥物和皮膚相容性、及藥物控釋性等特性,能快速和持久黏合,不妨礙人體自身癒合,且達到使用效果後能逐漸降解與吸收代謝,將可運用於外科手術中局部黏合和修補人體器官與組織、手術後防止傷口縫合處微血管滲血、骨科手術中結合和定位骨骼與關節、齒科手術中修補牙齒與傷口、黏合透過皮膚吸收的藥劑敷料、以及人體組織和器官植入物等。研究成果於2015年11月發表在《英國皇家學會界面》(Journal of The Royal Society Interface)期刊。

仿生沼石蛾的三網路水凝膠能持久黏合將應用於人體醫療(繪製者:王美乃)。

沼石蛾是水生昆蟲,偏好棲息於無污染的湖泊和溪流環境,為顯示水質的指標昆蟲之一,屬於毛翅目(Trichoptera)直鬚亞目(Integripalpia)沼石蛾科(Limnephilidae)。幼蟲會吐絲黏結植物葉片、莖枝、或砂石粒等水中微小碎屑,環繞身體建築具保護功能的複合管狀巢藏身,攜帶著自由活動覓食,能依體型增長,將巢擴大、並隨時修補。蟲絲的韌性纖維顯示能量消散、非線性黏彈性(viscoelasticity)、和拉伸變形的自癒特性,彈性蟲絲長度能夠延長兩倍、並緩慢恢復原狀,可吸收石材震動力量,增強堅固性,使防水的巢穴能承受幼蟲身體重量和環境水流的多次衝擊。

沼石蛾(Hesperophylax_occidentalis)幼蟲會在水中吐絲結巢(圖片來源:歐陽盛芝)。

由於自然界的溪流和湖泊常存在細菌或微生物,附著並腐蝕水中的基質表面,產生腐植酸等多酚化合物,研究團隊發現蟲絲的黏附機制是以酶界面的生物黏附與環境基質的多酚界面形成共價交聯,屬於一種具消耗能量黏彈性纖維芯(core)的壓敏膠,施加極微壓力即可在水中永久黏附;增韌機制則是因主成分H-絲心蛋白(H-fibroin)具重複絲氨酸基序的結構蛋白質大量磷酸化,產生磷酸絲氨酸(phosphoserine,簡稱pS),再與正二價鈣離子(Ca2+)交聯形成在應變期間可逆展開的β結構域(β-domains),表現屈服性能(yield behaviour)和限制蟲絲纖維與基質間黏合界面應力的力平線區(force plateau)。蟲絲纖維的初始剛度(initial stiffness)和尺寸(dimensions)之自癒允許應變能量的重複耗散,以保護在高能蟲體環境中的黏合鍵結。

他們也發現蟲絲黏彈性纖維芯的周圍層含酸性帶負電荷的醣蛋白,透過靜電作用,與基質界面進行初始黏附,醣羥基(OH)中的氫鍵會與表面締合的金屬配合物發生配體交換(ligands interchange reaction),促進化學界面結合。絲芯周圍還包覆56千道爾頓(kDa,碳12原子質量x1000=12KDa)的PEVK類蛋白(PEVK-like protein)、75千道爾頓的黏附蛋白(Caddisworm silk peroxinectin,簡稱csPxt)、和獨特的超氧化物歧化酶3(superoxide dismutase 3,簡稱csSOD3)。CsSOD3會與環境中的活性氧類作用產生過氧化氫(H2O2),刺激csPxt催化二酪氨酸(dityrosine)和蟲絲表層交聯,最後與外部基質表面的多酚化合物氧化交聯,擴散且相互滲透,形成含腐植酸和天然表面活性多酚的模糊周邊層。由於結合物理及化學交聯的三網路複合機制,不僅產生永久的界面黏附,且可穩定抵抗水的溶解力,使黏合效果更佳。

研究團隊因此模仿沼石蛾的黏附機制,在仿生合成強韌雙網路水凝膠增添增添過氧化酶催化共價二酪氨酸交聯的周圍環,製造兼具物理及化學交聯優點的新款醫療用仿生酶界面三網路水凝膠。他們以甲基丙烯酸羥乙酯(hydroxyethyl methacrylamide,簡稱HEMA)、甲基丙烯酸(methacrylic acid,簡稱MAA)、甲基丙烯酰氧乙基胺硫甲醯基-羅丹明(玫瑰紅,methacryloxyethyl thiocarbamoyl-rhodamine,簡稱RhoMA)等合成苯酚共軛聚水凝膠(甲基丙烯酸-2-羥基乙酯-甲基丙烯酸,phenol-conjugated poly,簡稱HEMA-co-MAA),為分子量每莫耳40公斤(kg/mol)的苯酚側鏈共聚物,如同蟲絲具有三個網路:第一個是透過正二價鈣離子與磷酸絲胺酸絡合物交聯形成堅硬的金屬離子依賴網路,第二個是透過正二價鈣離子羧酸鹽(carboxylate)絡合物構成較軟的網路,第三個共價交聯網路包括過氧化酶催化的共價二酪氨酸交聯的周圍環,提供永久合成纖維結構的被動彈性恢復力和記憶力,當合成纖維被卸載時,可引導回收金屬離子交聯的屈服結構域。研究團隊未來還將深入研究沼石蛾黏性蟲絲的生物化學、組裝、結構、機械性能、和黏合機制,研發類似人體組織完全濕潤的雙相材料,發明性能更優異的醫療用仿生壓敏膠。

(以上新聞編譯自2015年11月6日發行之Journal of The Royal Society Interface期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/6/22

本單元學術名稱:生物醫農>動物學
標籤:醫療用仿生酶界面三網路水凝膠

資料來源:

Wang, C.-S., H. Pan, G. M. Weerasekare, and R. J. Stewart. 2015. Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk. Journal of The Royal Society Interface, 12(112): 20150710-1-11.

延伸學習:

沼石蛾科。2017。百度百科,http://baike.baidu.com/item/%E6%B2%BC%E7%9F%
B3%E8%9B%BE%E7%A7%91(瀏覽日期:2017/05/29)。

壓敏膠。2017。台灣Wiki,http://www.twwiki.com/wiki/%E5%A3%93%E6%95%8F%
E8%86%A0(瀏覽日期:2017/06/01)。

AskNature Team. 2015. Glue fibers form underwater: a caddisfly. AskNature, May 25, 2015.

Kennerson, E. 2016. Want to make waterproof bandages for internal injuries? ask the caddisfly. PBS Newshour, August 22, 2016.

University of Utah. 2010. Glue, fly, glue: caddisflies' underwater silk adhesive might suture wounds. ScienceDaily, March 3, 2010.




























2017年6月19日 星期一

『臺博新知』:微型流量計仿生鯽魚側線系統

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

歐洲科學家研究鯽魚(Carassius auratus)等同水下聲納的側線系統(lateral line)感應機制,這種魚類特有的管狀感覺構造類似蝙蝠的聲納導航系統,具有避免碰撞、尋找獵物、兼具嗅覺、和定向輔助等功能,因而發明仿生微型流量計,可應用於流體計量核算、流程工業檢測和控制,例如偵測自來水系統和自動化控制大量流體、運用於水下聲納、人機互動與通訊、醫療保健和藥物注射的微流體系統等,且無論渾濁泥潭、低窪濕地、洪水淹沒的樓房或深海等環境,皆可探測環境的流體動態分布,協助民間或軍用勘測和救災。研究成果由德國波恩大學(University of Bonn)布萊克曼(Horst Bleckmann)博士與歐洲先進研究與研發中心(Center of Advanced European Studies and Research)合組的研究團隊於2015年8月發表在《微機械》(Micromachines)期刊。

仿生鯽魚側線的微型流量計可偵測控制流體和微流體系統等(繪製者:王美乃)。
鯽魚是歐亞地區常見的淡水魚,也是普遍養殖的食用魚,俗名鯽、土鯽、鯽瓜子、月鯽仔、細頭、鮒魚、寒鮒等,著名的觀賞魚金魚(Carassius auratus auratus)就是經人工育種產生的亞種。本種成魚體長約15-30公分,棲息於水草較多且水深超過20公尺的淺水域、溪流、或靜水域,主要取食藻類和小型底棲甲殼類,屬於條鰭魚綱(Actinopterygii)鯉形目(Cypriniformes)鯉科(Cyprinidae)。身體兩側鱗片上各有一條由許多側線孔形成的側線,從鰓蓋(operculum)延伸到尾鰭基部,也分布於頭部和尾鰭,側線孔下面連通成充滿黏液的側線管,管內具有神經細胞組成的機械感應器-神經丘(neuromasts),稱為管道神經丘(canal neuromasts),對水流加速度和局部壓力梯度差感應靈敏;分布於體表的神經丘則稱為表面神經丘(superficial neuromasts),對流速很敏感。

鯽魚(Carassius auratus)的側線系統相當於水下聲納(圖片來源:歐陽盛芝)。
鯽魚有240-320個管道神經丘和3,600-4,000個表面神經丘,每側位於頭部489±13個、魚體876±42個、尾鰭426±39個,平均1,928±85個。魚體每片鱗片上含0-13個、每個尺寸12-20×20-30微米(μm=10-6m)的橢圓形或紡錘狀表面神經丘,神經丘中央是大小為4-10×10-18微米、圓形或橢圓形的感覺上皮細胞,每個感覺上皮細胞含14-32個、平均19.8±5.1個毛細胞。一個毛細胞攜帶約20根頂纖毛(stereocilia)和一根長3-5微米動纖毛(Kinocilium),形成凝膠狀結構的纖毛束(ciliary bundles),構成長約40-45微米的壺腹帽(cupula)。當外界水流經鯽魚側線孔滲入,改變側線管內黏液的壓力,造成壓力梯度,使壺腹帽中纖毛束彎曲偏轉,導致毛細胞產生電響應,刺激神經丘釋放或傳遞訊息至腦部,鯽魚就能感知水壓大小、水流方向、水流速度、水中物體大小及位置等變化。

研究團隊模仿鯽魚側線的管道神經丘構造,採用微機電系統厚膜和薄膜技術,將聚二甲基矽氧烷(polydimethylsiloxane,簡稱PDMS)蝕刻製造,組裝在玻璃基板上形成矽晶片及PDMS光導感應薄片,加裝調節光強度的LED燈、檢測光強度變化的光學檢測器、和可輸出信號的電子電路板,再以鋁外殼封包,製成仿生微型流量計,可從水流波動的時空傳遞(spatio-temporal propagation)測量整體流速。

試驗以自來水系統偵測流量,結果準確檢測每小時500-4,000公升(L/h)流量,可承受高達6巴(bar=105Pa=100kN/m2=1.0197Kg/cm2,6巴相當於每平方公分有6.12公斤)水壓。研究團隊分析測試數據創建數學模型,當改變流量計的合成管道結構為尖頂(diminutions)或隔片狀(septa)時,管道形狀和增加PDMS薄片距離皆會減少機械串擾(cross-talk,指信號間的互相干擾),增加仿生流量計的靈敏度;若改變管道的寬度和孔徑,結果得知當管道寬度與孔徑均為3公釐時最敏感。若以厚度10-200微米的PDMS膜密封管道孔,將流量計與流體分離,並用礦物油填充管道結構時,流量計仍能感測流體波動,薄膜的影響較小,但厚膜會減小流量計輸出信號的幅度,一旦PDMS膜厚度超過100微米,即不適合檢測流體波動。而填充流體的密度、黏度和折射率差異,與封膜的材質及厚度等,都會影響流量計的靈敏度。

研究團隊提出將仿生微型流量計的PDMS薄片的偏轉量改成微米級,就可適用於醫療微流體應用領域,例如血液和尿液等體液、或藥劑等微流體的分流檢測,防止污染測量系統。並可視不同用途調整光導PDMS薄片形狀、尺寸、厚度、光學檢測器、和感應器電子輸出設備,提升靈敏度和頻率響應動態範圍,擴增應用層面。

(以上新聞編譯自2015年8月24日發行之Micromachines期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/6/15

本單元學術名稱:生物醫農>動物學
標籤:微型流量計仿生鯽魚側線系統

資料來源:

Herzog, H., S. Steltenkamp, A. Klein, S. Tätzner, E. Schulze, and H. Bleckmann. 2015. Micro-machined flow sensors mimicking lateral line canal neuromasts. Micromachines, 6(8): 1189-1212.

延伸學習:

鯽魚。2017。維基百科,https://zh.wikipedia.org/wiki/%E9%B2%AB%E9%B1%BC(瀏覽日期:2017/05/24)。

Anke Schmitz, Horst Bleckmann, and Joachim Mogdans. 2008. Organization of the superficial neuromast system in goldfish, Carassius auratus. Journal of Morphology, 269(6): 751–761.

AskNature Team. 2015. Lateral line system acts as sonar. Asknature, November 29, 2015.










2017年6月12日 星期一

『臺博新知』:仿生合成強韌水凝膠將能修復人體

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

美國科學家透過研究短石蛾(Brachycentrus echo)蟲絲的增韌機制,已開發出能夠凝固、保持強韌性、適應水中的仿生合成新型雙網路(double-network)強韌水凝膠,韌性超過人類軟骨和膝關節半月板,具有應用於人體植入物的生物醫材潛力,未來將能應用於組織工程,開發修復人體組織和器官的醫療級商品,修復人體器官、肌腱、軟骨等軟組織,及運用於牙齒或髖骨、顏面骨、和顱骨等硬骨的重建手術。

仿生短石蛾蟲絲的強韌水凝膠可用於組織工程及修復人體等(繪製者:王美乃)。

毛翅目(Trichoptera)昆蟲是有名的水下建築師,依幼蟲吐絲織造的類型,可分為三個亞目,其中環鬚亞目(Annulipalpia)為庇護所建造者(retreat-maker),生活在以蟲絲黏結葉片、莖枝、或石頭等碎粒組成的固定式複合結構,這種縝密構造通常配備透過庇護所能從水中捕獲食物的絲網;尖鬚亞目(Spicipalpia)是造繭者(cocoon-maker),會建構封閉剛硬的絲巢化蛹;直鬚亞目(Integripalpia)為築巢者(case-maker),以蟲絲黏結葉片、莖枝、或石頭等碎粒建造複合管狀結構,隨身攜帶輕便的巢自由活動覓食,遭遇鱒魚和其他天敵時,這種偽裝具有良好的物理性保護作用。

毛翅目幼蟲會以黏性蟲絲在水中建築各類型巢(圖片來源:歐陽盛芝)。

短石蛾屬於直鬚亞目短石蛾科(Brachycentridae),分布於美國加州和猶他州,幼蟲體內具有絹絲腺製造絲液,會從吐絲器吐出由一對絲纖維組成的蟲絲,建構一個管狀巢藏身。猶他大學(University of Utah)斯圖爾特(Russell J. Stewart)教授領導的研究團隊在水族箱內放入玻璃珠取代天然材質,結果短石蛾幼蟲立即吐絲築出玻璃珠巢,並正常活動和覓食。他們分析蟲絲為一種堅韌的黏合纖維,部分增韌機制是因正二價鈣離子磷酸鹽(Ca2+-phosphate)與包括蟲絲主成分H-絲心蛋白(H-fibroin)的結構蛋白質交聯成奈米結構域(nano-domains)所致,因此建構一個精簡模型,以逆向工程技術(即對天然的蟲絲進行逆向分析及研究,演繹其處理流程、組織結構、和功能效能規格等,製作出功能相近的合成產品)測試蟲絲結構、金屬離子磷酸鹽相互作用、和機械化學增韌機制的假說,並發明一種仿生合成強韌水凝膠,成果發表於2015年9月《軟物質》(Soft Matter)期刊。

研究團隊發現短石蛾蟲絲結構為動態的多網路纖維,每個H-絲心蛋白分子約含100個(pSX)n個結構域(pS是磷酸絲氨酸,X是脂肪族胺基酸或精氨酸,n=2-6),與正二價磷酸鹽鈣離子交聯形成穩定的β結構域,含約70%水分,初始模量為80-140兆帕(MPa=106Pa,一帕等於每平方米施加一牛頓力),平均應力(材料受力時,單位面積所受的內力)超過30兆帕時斷裂,應變(材料受力時,單位長度或單位體積產生之變形量)為100-150%。變形是可逆的,當應變20%時卸載,絲纖維在120分鐘內可恢復初始尺寸及99%的剛度和強度,具有堅韌、抗疲勞、自癒、黏彈性、與黏附性。

他們以第一網路透過可逆的正二價金屬離子磷酸鹽交聯提供強度,用第二個共價交聯的聚丙烯醯胺(polyacrylamide)彈性網路提供延展性和變形自癒,以不同的有機磷酸鹽單體和預聚合物合成。先將pMOEP(聚2-(甲基丙烯醯氧基)乙基磷酸酯)預聚物的鈉鹽與聚丙烯醯胺(polyacrylamide,簡稱Aam)和N,N’-亞甲基雙丙烯醯胺(bis-AAm)單體共聚,然後將pAam網路透過甲基丙烯酸(methacrylate groups)側鏈共價連接到pMOEP網路,形成雙網路水凝膠,再透過交換正一價鈉離子(Na+)與不同的正二價金屬離子(Mg2+、Ca2+、Zn2+),pMOEP網路被交聯和去溶脹,得到多組水凝膠後進行力學測試,最後開發出仿生合成新型雙網路強韌水凝膠。

這種類似絲心蛋白的新型水凝膠,結構由合成磷酸鹽移植壓克力預聚合物(phosphate-graft-methacrylate prepolymer)在聚丙烯醯胺的共價彈性網路內共聚合而成。當超過磷酸鹽側鏈的臨界密度時,比較以正二價鈣離子或鋅離子平衡、及以用正二價鎂離子或正一價鈉離平衡兩種水凝膠,前者能增加極大的初始剛性、依屈服性能的應變率、及斷裂需要100倍以上的功(work)。而聚集的交聯金屬離子磷酸鹽在臨界應力上耗散能量和伸展黏滯力,故能提高韌性且定性複製短石蛾蟲絲的力學特性。研究團隊還發現水凝膠的應力響應可透過選擇不同金屬離子進行調節,因為當測試顯示初始模量及斷裂能量都是正二價鎂離子小於鈣離子、又小於鋅離子(Mg2+ < Ca2+ < Zn2+),可作為設計特定應用規格水凝膠的方法,未來將針對增加彈性網路結構的剛度和強度進行改善,逐步提高水凝膠韌性。

(以上新聞編譯自2015年9月21日發行之Soft Matter期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/6/8

本單元學術名稱:生物醫農>動物學
標籤:仿生合成強韌水凝膠將能修復人體

資料來源:

Lane, D. D., S. Kaur, G. M. Weerasakare, and R. J. Stewart. 2015. Toughened hydrogels inspired by aquatic caddisworm silk. Soft Matter, 11(35): 6981-6990.

延伸學習:

水凝膠。2017。台灣Wiki。http://www.twwiki.com/wiki/%E6%B0%B4%E5%87%9D%E8%86%A0(瀏覽日期:2017/05/13)。

Kennerson, E. 2016. Sticky. stretchy. waterproof. the amazing underwater tape of the caddisfly. KQED Science, August 9, 2016.

Stephen. E. 2015. Caddisfly silk gets shocked into self-recovery. Chemistry World, January 16, 2015.

Stewart, R. J. and C. S. Wang. 2010. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromolecules, 11(4): 969-974.



最新留言

追蹤者

搜尋此網誌