2016年12月26日 星期一

『臺博新知』:仿生企鵝羽毛新材料可防冰抗凍



賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

企鵝通常生活在平均溫度在攝氏零下49度的南極,能在如此寒冷的棲地活動卻未凍成冰塊的秘密,就成為科學家探討的主題。中國北京航空航天大學與中國科學院理化技術研究所等跨機構研究團隊,發現洪堡企鵝(Spheniscus humboldti)羽毛具有防水和防止結冰的微觀結構,研發出由聚醯亞胺(Polyimide)奈米纖維電紡絲(electrospinning)製成的仿生防冰疊層奈米纖維薄膜,並提出這種羽毛的疏水性和抗凍性模型,除能有效防水外,其防凍效果更優於絕緣材質。
 
企鵝羽毛能防水和防止結冰,據此研發的仿生聚醯亞胺奈米纖維膜具更佳的疏水防冰抗凍效果(繪製者:王美乃)。



這項成果今(2016)年2月發表於美國《物理化學期刊C》(The Journal of Physical Chemistry C),未來可用以製造防止表面結冰的材料,運用在需要防止結冰的場合,例如製成適合嚴寒或極端條件的超級保暖防寒衣物用品、應用於船舶和飛機表面的抗凍防冰塗層、在深海、高山或極地使用的輸油管、海底電纜等各項管線設備的絕緣層表面、航太工業的太空裝置設備、建物屋頂或外牆、冷凍空調或其他電氣設備的外殼或零件管線等,即使遭遇致命的冰雪風暴也不會因結冰導致破裂故障。  
分布於非洲西南岸的黑腳企鵝(Spheniscus demersus)又名非洲企鵝,是洪堡企鵝的近親(圖片來源:林士傑)。
洪堡企鵝屬於企鵝科(Spheniscidae),又名漢波德企鵝或洪氏環企鵝,胸前環繞一道寬帶就像圍著黑色的圍巾,在國際自然保護聯盟瀕危物種紅色名錄列為易危等級,是一種不會飛行、卻很會潛水的鳥類。本種分布在南美洲秘魯和智利沿岸到南緯40度,生活環境相對較溫暖,不低於攝氏零下10度,但也是常年生活在冰天雪地的環境中,需潛入低於冰點的海水中游泳覓食。牠們的鱗片狀羽毛特別短小但較厚,羽軸(rachis)寬短,羽片狹窄密集、重疊密接,均勻覆蓋體表,可防止海水滲透皮膚,並具保溫絕緣功效,即使在嚴寒低溫環境下,羽毛卻幾乎不會結霜或結冰,顯示優異的抗凍和防冰性。

 以掃描電子顯微鏡觀察洪堡企鵝的羽毛有羽軸和兩片羽片,羽片上的倒鉤(barb)長度5-7mm,直徑25-30μm,沿著羽軸以20度角平行排列,倒鉤上有小羽枝(barbules),平均長度約300μm,直徑約7μm,排列方式類似支架,小羽枝上有許多鉤狀剛毛(hamuli),並以間距約20μm,直徑約3μm垂直鉤在小羽枝上,這些鉤狀剛毛互鉤後構成嚴密的立體微結構網絡,形成很多縝密的皺褶;倒鉤尖端有少許鉤狀剛毛,相鄰倒鉤間距為幾微米至幾十微米,沿著倒鉤方向有約100nm深的定向奈米級凹槽(oriented nanoscaled grooves)。
  
洪堡企鵝羽毛表面的微米級和奈米級分層粗糙結構能有效防止水分的浸潤,被粗糙微結構(即皺褶空間)捕獲的氣泡(air pockets)還可減少羽毛和水滴間的表面接觸面積,形成有效的熱屏障,阻止結冰期間的熱傳導,並降低冰黏附強度,因此企鵝翅膀表面不易結冰。以3μL體積水滴測試,發現它的平衡靜態接觸角(equilibrium static contact angle)達147度,顯示疏水性,儘管鉤狀剛毛的存在增強粗糙度及增加羽毛的疏水性,但增加的特定表面積卻加強了微水滴黏附,當單一含鉤狀剛毛的倒鉤表面和水滴間達到黏附力最大值23.4μN時,羽毛的斥水性會藉著倒鉤和小羽枝直徑和間距變化而增大,有效減弱水和冰晶的黏附。
  
研究團隊在不對稱電極上利用高壓電的電紡絲技術,使用聚醯亞胺奈米纖維模仿企鵝羽毛製造非常薄的輻射扇形羽毛,直徑為100-500nm,均勻且具有平滑的表面,相鄰纖維間的距離為幾微米至幾十微米,類似企鵝羽毛倒鉤尖端的結構。製造過程中其餘的奈米纖維隨機堆疊在輻射扇形的奈米纖維上,形成嚴密立體微結構網絡的仿生「聚醯亞胺奈米纖維膜」(polyimide nanofiber membrane),獨特疊層微結構形成表面化學物質的梯度密度(gradient density),成為接觸角和黏附力所需梯度變化,透過增加相鄰纖維間的距離,可固定微水滴的聚結而有效防止冰的黏附。測試時水滴在膜表面近似球形,具有非常卓越的超疏水性,且奈米纖維排列密集、間隙很小,彼此重疊形成的疊層使水滴不易滲透,比企鵝羽毛更不吸濕,用攝氏零下5度的冰水噴灑數小時也不會結冰,兼具良好的耐熱性。因此仿生聚醯亞胺奈米纖維膜的性能不僅優於真正的企鵝羽毛,而且未來可因應功能需求依其疏水性和抗凍性模型調整,產製出不同應用領域的相關防冰抗凍商品。
 
(以上新聞編譯自2016210日發行之The Journal of Physical ChemistryC期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館
日期:2016/12/22
本單元學術名稱:生物醫農>動物學
標籤:仿生企鵝羽毛新材料可防冰抗凍
資料來源:
Wang, S., Z. Yang, G. Gong, J. Wang, J. Wu, S. Yang, and L. Jiang. 2016. Icephobicity of penguins Spheniscus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. The Journal of Physical Chemistry C, 2016, 120: 15923-15929 (+ 2pp. Supporting Information) (http://dx.doi.org/10.1021/acs.jpcc.5b12298).
延伸學習:
漢波德企鵝。2016。維基百科,https://zh.wikipedia.org/wiki/%E6%BC%A2%E6%B3%A2%
E5%BE%B7%E4%BC%81%E9%B5%9D(瀏覽日期:2016/11/24)。
American Chemical Society. 2016. What makes penguin feathers ice-proof. Phys Org / News, February 24, 2016.
Monahan, P. 2016. How penguins stay ice-proof. Science / News, February 26, 2016.



















2016年12月19日 星期一

『臺博新知』:仿生豬籠草塗層TLP可防止血栓和污染



賴婉婷/國立臺灣博物館研究組
歐陽盛芝/國立臺灣博物館
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
一款應用於醫療器械的仿生豬籠草超滑表面塗層「束液全氟化碳化物」(techered-liquid perfluorocarbon,簡稱TLP),可塗佈在醫療用的管線、導管和器械表面,讓病患減少抗凝劑的使用,有效排斥全血,抵抗血液成分和細菌等微生物的黏附污染,在體外和體內無抗凝劑時均能減少血栓形成,有助於防止醫療器械被血栓阻塞和生物沾黏污染。即使能在垂直玻璃上行走的壁虎,也無法黏附在垂直的TLP塗層壓克力管上。
仿生豬籠草塗層TLP可塗佈在醫療管線和器械表面,能有效排斥全血,減少血栓形成阻塞及微生物黏附污染(繪製者:王美乃)。



美國哈佛大學因格貝爾(Donald E. Ingber)博士領導的研究團隊2014年在《自然生物技術》(Nature Biotechnology)期刊發表TLP這項技術,他採用全氟碳化物(perfluorocarbon)為基板,先用化學共價結合柔軟的全氟碳化物薄層或被束縛的全氟碳化物(TP),然後將全氟萘烷(perfluorodecalin,簡稱LP)流動層塗覆在基板表面,使LPTP組成雙層結構作為TLP塗層表面,可防止纖維蛋白(fibrin)附著、降低血小板黏附及活化形成凝塊,抑制生物膜形成,並讓體外血流穩定。
人類的凝血機制有益於傷口止血,但對有人工關節置換、心臟植入物(例如人工心臟、心室輔助裝置、心律整流去顫器等)和血液透析裝置的病人卻是致命問題,必須搭配使用抗凝血劑,避免血液在這些裝置或管道內凝結阻塞,然而劑量過多時,血小板可能減低而導致流血不止,甚至死亡風險。由於體外循環和留置體內的醫療器械常因形成血栓和生物沾黏污染等造成致命危險,因此迫切需要能排斥血液和抑制生物膜形成的實用塗層。

TLP靈感來自仿生二齒豬籠草(Nepenthes bicalcarata)捕蟲籠唇部結構開發的SLIPS(圖片來源:歐陽盛芝)。


除了塗佈在體內、外用的醫療管線及管路外,TLP也可應用於其他醫療裝置的表面塗層,例如全人工心臟和心室輔助裝置等體內植入物,和針頭、探針、真空採血管、縫線、血液儲存袋等,以及需要無菌無垢的醫療器械;對於某些需要施用抗血小板劑、抗凝血劑或抗生素藥物植入的病患,使用TLP還可降低用藥量和副作用,大幅降低醫療費用。
TLP的靈感源自2011年哈佛大學艾森貝格(Joanna Aizenberg)教授團隊模仿二齒豬籠草(Nepenthes bicalcarata)捕蟲籠唇部,以不沾鍋常用的鐵氟龍當多孔基板,注入當潤滑液的全氟化液體(perfluorinated),加工所製成的人造超滑塗層「注液光滑多孔表面」(slippery liquid-infused porous surfaces,簡稱SLIPS)。因為豬籠草會利用雨水、蜜汁、露水等液體,在捕蟲籠唇部表面形成滑溜的液膜表面,當小型昆蟲或生物被吸引前來取食蜜汁時,唇部的特殊微結構讓牠們極易滑倒而跌落捕蟲籠內被消化。經測試這種天然的液膜表面具有自我潤滑、修復、清潔等功能,在高壓或冰凍等極端環境條件下仍維持性能,還能排斥包括血液、油等任何液體及多種固體
SLIPS使用多孔、有紋理的表面基板固定潤滑液層,但醫療器械大多是平滑表面,所以TLP改採低壓電漿表面改質技術(low-pressure plasma surface modification procedure)做為塗覆方式,利用化學改質醫療器械表面的天然粗糙度,幾乎可以應用於任何材料,複雜的幾何形狀也不會改變材料的體積性質,加上處理溫度為攝氏38度,也適用溫度敏感的材料。
TLP塗層可讓血液不會停留在醫療器材表面,將新鮮全血(whole blood)滴在30度角傾斜的TLP塗層壓克力表面,血滴在3秒內立即滑落、且無任何殘留;經測試將活豬植入醫療級管線和導管組裝成動靜脈分流器,可在無抗凝血劑下保持開放至少8小時;在常溫常濕條件下儲放一年後測試,仍能防止導管、管線或透析機中血流引起的凝塊生成。除排斥血纖維蛋白和血小板等許多物質外,細菌等生物亦無法在TLP上面附著,在環狀TLP塗層聚氯乙烯(PolyVinyl Chloride,簡稱PVC)醫療級管線內培養綠膿桿菌(Pseudomonas aeruginosa)六週半,僅黏附百萬分之一的細菌,且減少8倍生物膜形成,故TLP確能有效防止生物沾附污染。
(以上新聞編譯自20141112日發行之Nature Biotechnology雜誌等)
(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿
責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館
日期:2016/12/15
本單元學術名稱:生物醫農>動物學
標籤:仿生豬籠草塗層TLP可防止血栓和污染
資料來源:
Leslie, D. C., A. Waterhouse, J. B. Berthet, T. M. Valentin, A. L. Watters, A. Jain, P. Kim, B. D. Hatton, A. Nedder, K. Donovan, E. H. Super, C. Howell, C. P. Johnson, T. L. Vu, D. E. Bolgen, S. Rifai, A. R. Hansen, M. Aizenberg, M. Super, J. Aizenberg, and D. E. Ingber. 2014. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nature Biotechnology, 32(11): 1134-1140 (+ 3pp. Supplementary Information).
Crawford, M. 2015. Medtech tubing: small, strong & complex. Medical Product Outsourcing / Features, October 14, 2015.
Shin, S., J. Seo, H. Han, S. Kang, H. Kim, and T. Lee. 2016. Bio-inspired extreme wetting surfaces for biomedical applications. Materials, 9(2): 116-1-26.
Wong T. S., S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477(7365): 443-447 (+ 17pp. Supplementary Information).
延伸學習:
Leslie, D. C., A. Waterhouse, J. B. Berthet, T. M. Valentin, A. L. Watters, A. Jain, P. Kim, B. D. Hatton, A. Nedder, K. Donovan, E. H. Super, C. Howell, C. P. Johnson, T. L. Vu, D. Bolgen, A. Hansen, M. Aizenberg, M. Super, J. Aizenberg, and D. E. Ingber. 2014. A bioinspired surface coating that prevents thrombosis and biofouling. 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, October 26-30, 2014, San Antonio, Texas, USA, 93-95.
Wyss Institute for Biologically Inspired Engineering. 2014. Biocoating prevents blood from clotting on implantables. Medical Design Technology, October 13, 2014.


最新留言

追蹤者

搜尋此網誌