2017年7月31日 星期一

『臺博新知』:仿生合成奈米蛛毛的非炫彩結構色

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士

歐陽盛芝/國立臺灣博物館
美國科學家模仿捕鳥蛛(tarantulas)蛛毛的結構色,以3D列印製造花朵形奈米結構的仿生合成奈米蛛毛原型,開發出非炫彩結構色,不僅創造新的色彩技術,並且幾乎消除炫彩現象,發明非炫彩結構色的新型複合材料,可取代化學色染料,應用於紡織品、化妝品、油漆、包裝材料、物體外殼等,豔麗、永不褪色,也能運用於電視、手機、和電腦螢幕等,降低眩光和反射,達到各角度視野舒適清晰。研究成果由艾克朗大學(University of Akron)布萊克利奇(Todd A. Blackledage)教授與加州大學聖地牙哥分校(University of California, San Diego)合組的研究團隊發表於201511月《科學進展》(Science Advances)期刊。
仿生捕鳥蛛毛非炫彩結構色的合成奈米蛛毛可降低眩光和反射(繪製者:王美乃)。
捕鳥蛛是兇猛有毒大型多毛蜘蛛,善跑能跳、行動敏捷,足展超過10公分,體長可達10-25公分,分泌毒液以毒牙麻痺或毒死獵物後進食,因捕食像蜂鳥般小型鳥類而得名,又名大蘭多毒蛛,屬於節肢動物門(Arthropoda)蛛形綱(Arachnida)蜘蛛目(Araneae)捕鳥蛛科Theraphosidae),全身密佈細毛,展現生動且不會隨視角變化而改變強度或色調的藍色。蛛毛除能防水和防寄生蟲外,還能偵測細微的空氣震動和禦敵,有些種類遇到威脅時會翹起腹部對準天敵,以後足摩擦腹部背面蛛毛形成毛霧,將含尖刺的細毛刺入天敵體表或皮膚,或使用毒牙攻擊,以嚇阻天敵。
捕鳥蛛會捕食小型鳥類(圖片來源:歐陽盛芝)。

結構色普遍存在某些昆蟲體壁、蝴蝶翅膀、和鳥類羽毛等,會因結構差異、光線射入角度、和觀看角度等改變,呈現不同的顏色變化,這種在某個視線範圍反射單一色彩,換個角度就看到不同顏色的現象稱為「炫彩」。捕鳥蛛毛的藍色屬於結構色,不會被光線破壞也不會褪色,光學原理是光譜中不同波長的光照射到小於一微米(μm=10-6m)的物理結構,引起散射、繞射、或衍射等作用,形成眼睛看到的閃爍色彩。
研究團隊採用譜系重建(phylogenetic reconstruction,演化樹重建)、電子顯微鏡、顯微分光光度測定法(microspectrophotometry)、和光學建模等技術,研究和比較107亞科53屬呈現藍色的捕鳥蛛之親緣關係、蛛毛的奈米結構圖案多樣性、及藍色非炫彩結構色產生機制,根據分類上的親緣關係所得到的演化樹顯示,至少有一種捕鳥蛛具有由黃、橙、紅、棕、和黑色色素產生的顏色,其中7亞科40屬同時也具有藍色,只有12屬顯示綠色,可見藍色較常見,因此假設藍色是遠祖時期存在的特徵,證實至少經過8次獨立演化。
他們選用8種捕鳥蛛進一步觀察蛛毛顯微構造,包括智利藍腿美人(Euathlus pulcherrimaklaasi)、紫樹食鳥蛛(Tapinauchenius violaceus)、委內瑞拉紅綠橙(Chromatopelma cyaneopubescens)、新加坡藍(Lampropelma violaceopes)、法屬圭亞那藍牙(Ephebopus cyanognathus)、波多黎各金粉趾(Avicularia laeta)、藍寶石華麗雨林(Poecilotheria metallica)、和智利紅玫瑰(Grammostola rosea),發現可分成光滑棒狀毛、棒狀的花朵形突起對稱毛、和不規則/擬刀形的突起不對稱毛等三類。蛛毛的奈米結構分為準有序(quasi-ordered)海綿及有組織多層結構,其中多層結構是由幾丁質-蛋白複合材料構成折射率(refractive index,簡稱nr)約1.63的高電子密度材料,與由空氣形成的低電子密度材料交替組成。即使這8種捕鳥蛛毛的奈米結構均有差異,卻經趨同演化呈現出近似的藍色。
跨種測量8種捕鳥蛛單根藍色蛛毛的反射光譜,結果反射峰值(reflectance peaks)是450±21微米,變異係數(coefficient of variation,簡稱c.v.)為4.65%;鱗翅目(Lepidoptera)灰蝶科(Lycaenidae)眼灰蝶屬(Polyommatus)蝴蝶藍色鱗片的反射峰值分布在400-500微米。他們比較文獻中出現藍色的其他物種,包括5種蛺蝶科(Nymphalidae)閃蝶屬(Morpho)、3種其他科蝴蝶,和1種燕蛾科(Uraniidae)燕蛾(Urania fulgens)鱗片,藍色峰值是454±41 微米,變異係數為8.94%;鸚形目(Psittaciformes)、企鵝目(Sphenisciformes)、及雀形目(Passeriformes)的10種鳥類羽毛,藍色峰值是434±27微米,變異係數為6.13%,表示捕鳥蛛科的藍色反射分布比鱗翅目蝶蛾和鳥類更狹窄。
奈米結構相似的藍寶石華麗雨林和新加坡藍兩種捕鳥蛛的藍色棒狀花朵形突起對稱毛,對照比較雀形目鴉科(Corvidae)喜鵲(Pica pica)的藍綠色尾羽,結果兩種捕鳥蛛的藍色不僅可從±75度垂直入射角度看到,且無顏色偏移,即無炫彩效果;但喜鵲的藍綠色只能在±30度垂直入射角度顯現,其餘角度會出現不同顏色的炫彩效果。係因捕鳥蛛的非炫彩結構色產生機制是透過多層干涉產生藍色,以顯微鏡觀察雖有炫彩現象,但卻超出人類視覺的空間解析度,因此成為良好的非炫彩結構色。
研究團隊根據研究結果創建光學模型,並驗證了藍色蛛毛的結構基礎。由於棒狀花朵形突起對稱毛的奈米結構從未在其他物種發現,因此他們以藍色蛛毛高度有序和週期性光子結構為基礎仿生合成奈米蛛毛,用3D列印機在長、寬各數公釐的基材上列印出覆蓋花朵形多層奈米結構的合成奈米蛛毛原型,由於奈米結構具有高度可調性,能透過輕微的間距改變來實現全色域的色彩變化,具有極大應用潛力和經濟效益。因此未來將以3D列印設計製造5種不同結構的仿生合成奈米蛛毛,測試其奈米結構與排列、顏色變化、和消除炫彩等因素,納入光學模型,以便能客製化設計符合需求的產品,達成大量生產這類非炫彩結構色仿生應用商品的可能性。
(以上新聞編譯自20151127日發行之Science Advances期刊)
(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿
責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/7/20
本單元學術名稱:生物醫農>動物學
標籤:合成奈米蛛毛仿生捕鳥蛛毛結構色
資料來源:
Hsiung, B.-K., D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge. 2015. Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity. Science Advances, 1(10): e1500709-1-8 (+ 6 pp. Supplementary Materials).

延伸學習:
食鳥蛛。2017。台灣Wordhttp://www.twword.com/wiki/%E9%A3%9F%E9%B3%A5%E8%9B%9B瀏覽日期2017/06/16)。
熊柏凱。2016。師法毛蜘蛛非炫彩結構色材料之研發。Experiment, https://experiment.com/u/XPsAuwMarch 31, 2016
Duhaime-Ross, A. 2015. Blue tarantulas may help humans make better wide-angle computer displays. The Verge, November 27, 2015.
Reisewitz, A. 2015. New study reveals what’s behind a tarantula’s blue hue. UC San Diego / UC San Diego News Center, November 30, 2015.
Webb, J. 2015. Tarantulas evolved blue colour ‘at least eight times’. BBC News, November 28, 2015.

2017年7月24日 星期一

『臺博新知』:新型混合式黏膠仿生沙堡蠕蟲黏膠

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

美國科學家研究沙堡蠕蟲(Phragmatopoma californica)黏膠,開發出新型仿生混合式黏膠,在水中和空氣中都能維持黏性,透過注射過程就可使用,具有不怕水、超強黏附力、和生物相容性,以水取代有機溶劑的方式使黏附過程更環保。未來可開發成水下建築、建物、橋樑、和隧道等的膠黏劑、填縫劑、油漆、塗料,耐受雨水或海水侵害,保持堅固耐久;或研發成防污塗料,塗布在船底、橋墩、或碼頭,避免貝類等海洋生物黏附淤積;也能應用於牙科各類醫材、連接人體義肢和固定植入物、協助黏合治療心臟血管疾病、外科手術傷口和精密胎兒手術微創等醫療領域。研究成果由加州大學聖塔芭芭拉分校(University of California, Santa Barbara)威特(J. Herbert Waite)教授領導的跨系研究團隊於2016年4月發表在《自然材料科學》(Nature Materials)期刊。

仿生沙堡蠕蟲黏膠的新型仿生混合式黏膠,在水中可堅固耐久(繪製者:王美乃)。
小型海洋生物沙堡蠕蟲又名蜂巢蟲或蜂巢管蠕蟲,屬於環節動物門(Annelida)多毛綱(Polychaeta)管觸鬚目(Canalipalpata)纓鰓蟲科(Sabellarididae),本種頭部具有許多纖毛狀觸手抓取水中細小貝殼或沙粒等材料,搬移到口器前的一對稱為鉗狀唇瓣(pincer-shaped palps)的建築器官,這對唇瓣會分泌液態蛋白質黏膠塗抹在建材上,從尾部圍繞身體,往上建造約2.5公分長、具有圓形開口,稱為「棲管」的管狀巢藏身。當被海水浸沒時,沙堡蠕蟲會從棲管伸出觸手收集食物顆粒進食,建材顆粒則用於修補或加高棲管,退潮時就以剛毛製成的盾狀口蓋封閉管口保護。常群聚生活,形成超過兩公尺、近似多孔礁石的大型蜂巢狀聚落。
沙堡蠕蟲(Phragmatopoma californica)築巢的黏膠具超強黏附力(圖片來源:歐陽盛芝)。
研究團隊分析沙堡蠕蟲的液態黏膠黏附機制,發現黏膠液體是由微酸性(pH=5)富含聚陰離子肽的O-磷酸絲氨酸(O-phosphoserine)、具高賴氨酸(Lysine)和精氨酸(Arginine)的聚陽離子肽等相反電荷的多肽(polypeptides)組成,沉積到顆粒表面時,將凝聚流體相轉化為固體。首先形成與周遭微鹼性(pH=8.2)海水混合後不會溶解的蛋白質金屬離子絡合物,和氧化的左旋多巴(3,4-二羥苯丙氨酸,3,4-dihydroxy-L-phenylalanine,簡稱L-DOPA或L-多巴)形成交聯的緩慢共價固化,在建材表面硬化為聚電解質絡合物(polyelectrolyte complexes)的海綿狀多孔固體黏膠,構成永久黏附。左旋多巴是一種帶有鄰苯二酚(catechol)側基的胺基酸殘基,可透過氧化交聯形成共價鍵提升黏合性,也能與金屬離子(主要是正三價鐵離子)和不同基材表面配位增加黏附強度,對強力黏附性具關鍵作用。

他們將仿生重點放在沙堡蠕蟲形成複合凝聚層(complex coacervates)水性聚電解質絡合物的濕黏附機制,這種結構化流體具高密度、高擴散性、和低界面張力特性,可透過溶劑交換(solvent exchange)活化。由於大部分有機溶劑具較低的介電常數(ε,數字低表示絕緣能力強),可在弱聚電解質中抑制離子化,將介質從低ε的有機變為高ε的水基溶劑,來調節中性及帶電弱聚電解質間絡合反應,導致溶劑交換。結合此特性能有效控制黏附作用的起始反應點,當遇到水後不僅快速反應,還能增加濕黏附的穩定性。

研究團隊依研究結果仿生聚電解質絡合物濕黏附機制,用AB膠概念分別製造溶於二甲基亞碸(dimethyl sulphoxide,(CH3)2SO,簡稱DMSO)的兩種聚合物,第一種是用鄰苯二酚官能化的聚丙烯酸(poly(acrylic acid),簡稱PAAcat),第二種是與雙三氟甲磺酰亞胺(bis(trifluoromethane-sulphonyl)imide,簡稱Tf2N-)離子配對的季銨化殼聚醣(quaternized chitosan,簡稱QCS-Tf2N),組成新型仿生混合式黏膠。

將PAAcat和QCS-Tf2N溶於DMSO形成高分子混合物溶液時,因DMSO的介電常數較低,PAAcat的丙烯酸基(COOH)未離子化,沒有絡合反應;把高分子混合物溶液注入水中,因水和DMSO進行溶劑交換,引起PAAcat去質子化,將丙烯酸基從中性轉化為帶負電荷(COO-),造成陰性PAAcat和陽性QCS-Tf2N間的靜電吸引,形成聚電解質絡合物;同時高分子混合物溶液的體積從5微升(μL=10-6L)變成0.18 ± 0.1微升,縮小90%以上。PAAcat中的鄰苯二酚密度愈高,仿生黏膠固化結構愈疏鬆多孔,愈不易斷裂。

新型仿生混合式黏膠在水中固化低於25秒,在玻璃表面即產生黏附力,固化時間愈久其黏附力愈強,係以黏膠放入羅丹明6G(Rhodamine 6G)染料追蹤,在水中以注射器將黏膠擠出圖案至聚合物、金屬、玻璃、貽貝殼、石頭、葉子、和木材等20多種基材表面,持續25秒至1小時等不同時間在水中固化,離水到空氣中噴射2-30巴(bar=1.0197 Kg/cm2,2巴等於每平方公分承受2.04公斤重量)的水至仿生黏膠塗層15秒測試黏附力所產生的結果。若在沸水中可耐受1小時,再放入DMSO或甲醇、乙醇(酒精)、異丙醇、丙酮、四氫呋喃(THF)、乙醚、和二甲基甲酰胺(DMF)等其他溶劑中,對各種表面基材仍具有快速穩定的黏附力。再以一根棉線點黏在載玻片上,1小時後離水取出,棉線在空氣中可支撐20公克載玻片重量。若以兩片載玻片在水中注射仿生黏膠,無須施壓就可彼此黏合。

由於這種黏膠固化後無法以水噴射破壞,卻可用丁腈橡膠(nitrile rubber)手套的特定摩擦力擦掉,因此調節仿生黏膠的鄰苯二酚密度、聚電解質絡合物、溶劑交換、和物理結構等,就可在潮濕環境下呈現超強黏附或去除黏性。新型仿生混合式黏膠不僅可在各種環境條件和各種表面快速黏合,應用面寬廣,而且更環保,對環境或資源都有極大幫助。

(以上新聞編譯自2016年4月發行之Nature Materials期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/7/27

本單元學術名稱:生物醫農>動物學
標籤:新型混合式黏膠仿生沙堡蠕蟲黏膠

資料來源:
Zhao, Q., D. W. Lee, B. K. Ahn, S. Seo, Y. Kaufman, J. N. Israelachvili, and J. H. Waite. 2016. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nature Materials, 15(4): 407–412 (+ 20 pp. Supplementary Information).

延伸學習:
Fernandez, S. 2016. Cling-on warriors: sandcastle worms serve as inspiration for a new type of underwater adhesive being developed at UCSB. UCSB Current News, February 1, 2016.

Lee, D. 2016. Sandcastle worm inspires scientists to create a novel underwater adhesive. WIR (World Industrial Reporter), February 2, 2016.

Sandcastle worm. 2017. Wikipedia, https://en.wikipedia.org/wiki/Sandcastle_worm (Visit date: 2017/06/20).

2017年7月17日 星期一

『臺灣博物』:智能可視保護硬膜仿生石鼈眼睛

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

美國科學家研究西印度石鼈(Acanthopleura granulata)的貝殼成分、結構、和功能,尤其是眼睛的光學系統,得知眼睛與貝殼均由生物礦化(biomineralization)的碳酸鈣(CaCO3)構成,因眼睛所含晶粒較大且以特定方式排列,不僅堅硬,還可監測周圍環境,看清楚超過2公尺距離的20公分魚或鳥等天敵,以硬殼和緊密吸貼岩石方式抵抗。研究團隊根據此結果測試及模擬其視覺解析度、辨識影像、和機械性能,並創建模型,未來將依據西印度石鼈貝殼表面三種構造模型,開發新型仿生智能可視保護硬膜,這是一種感光清晰和具強韌保護功能的新材料,有不怕水、不怕撞、不怕摔特性,可根據晶形結構、晶粒尺寸、排列規則性和方向性變化改變為眼睛或鎧甲功能,除能製造眼鏡、眼罩、手機、或安全帽等需要視野清楚的商業產品外,還可研發防彈頭盔、護盾、防爆盾牌、或坦克車外殼等軍事用途,未來甚至能用於機器人皮膚中多視覺感應成像。這項研究成果由美國麻省理工學院(MIT)奧蒂茲(Christine Ortiz)教授領導跨領域研究團隊,成員包括哈佛大學(Harvard University)、卡夫利生物奈米科學與技術研究所(Kavli Institute for Bionano Science and Technology)、南卡羅萊納大學(University of South Carolina)、及美國能源部阿貢國家實驗室(Argonne National Laboratory)於2015年11月在《科學》(Science)期刊發表。
仿生石鼈眼睛的智能可視保護硬膜可變換為眼睛或鎧甲功能(繪製者:王美乃)。
西印度石鼈是夜行性原始貝類,身體扁平呈卵圓形,屬於軟體動物門(Mollusca)多板綱(Polyplacophora)新石鼈目(Neoloricata)石鼈科(Chitonidae),分布於佛羅里達州南部至墨西哥,往南到巴拿馬和西印度群島,棲息於潮間帶岩石或珊瑚礁的石縫或凹洞中,取食藻類等植物。貝殼僅生長於身體背面,由八片覆瓦狀排列的岩石般堅硬殼板組成,殼長約3-7公分,殼周圍有一圈稱為環帶的外套膜,身體腹面幾乎被用來爬行或吸附在岩石上的寬扁肉足佔滿;由於頭部和身體完全被殼板覆蓋,眼睛長在殼板邊緣,形成約一千個直徑小於0.1公釐的黑色斑點,較舊的眼睛接近殼板中心,這些眼睛難免遭到侵蝕或損傷,可隨貝殼生長而不斷更新,維持一千隻功能正常的眼睛同時運行,可提高對天敵或障礙的靈敏度、信噪比(指正常訊號與雜訊的比值,比值愈高效果愈佳)、及將假警報與真實威脅區分的能力。
西印度石鼈(Acanthopleura granulata)的眼睛和貝殼成分相同(圖片來源:歐陽盛芝)。
研究團隊觀察西印度石鼈的貝殼是透過有機分子在奈米尺度下,精確控制體內無機礦物結晶的生物礦化形成,表面可區分為三種突起構造,均由碳酸鈣以文石(aragonite,又稱霰石)晶型結構組成。第一種分布最廣,直徑約200微米(μm=10-6m)、高度約100微米的堅硬鎧甲突起,晶粒較小、排列不規則且方向不一致;另外兩種微突起位於鎧甲突起山峰間的平坦山谷內,其中第二種直徑約50微米的黑色突起,是被外徑86 ± 4微米含褐黑素(pheomelanin)暗區包圍的眼睛,可感光和辨識影像,表層為厚度5微米的角膜,然後是厚度38±2微米的水晶體,晶粒較大(平均粒徑約10微米)、排成一列且方向一致,能讓更多光線通過,並使光散射最小化以增加視覺解析度,更下方為非晶質(amorphous)層,分為有機質組成的L1層和含鈣L2層,最下面是深、寬為56±776±5微米的梨形專用眼室,體積是巨微眼腔室的5倍;第三種是近似眼睛大小的有孔突起,為可吸收光線的巨微眼(megalaesthetes),內具寬度約40微米的圓柱形腔室,眼睛和巨微眼的視網膜由100個感光細胞組成,下接視神經管,兩者的腔室內都有鈣化物質環繞視網膜成C形口袋,並藉著稱為微微眼(micraesthetes)的大量微小感覺孔從腔室分支到殼表。

研究團隊以魚來模擬和測試西印度石鼈一隻眼睛的成像力和解像力,發現水晶體能聚焦圖像傳送給視網膜,投射出魚的可辨識影像,證明西印度石鼈可以看清楚20公分物體的最遠距離約為2公尺。再對貝殼施加1牛頓(N,使質量1公斤物體的加速度達每平方秒1公尺時所需的力量)的力進行奈米壓痕測試,結果鎧甲突起區僅造成相對較小的永久變形,表現較大的機械完整性,但眼睛區卻明顯斷裂,平均載荷僅0.84±0.11牛頓;巨微眼區呈現微裂紋,表示一殼多用的構造仍會降低防禦強度,必須適度取得平衡。西印度石鼈經長期演化,已採用以較高大的鎧甲突起保護躲藏其中的眼睛和巨微眼、透過厚且堅硬的底層來彌補整個表層的機械弱點、大量的眼睛和巨微眼有助於減少殼體損傷等策略來補償。因此研究團隊創建電腦模型,將來使用碳酸鈣或其他種成分的相同材料,依需求改變晶形結構、晶粒尺寸、排列規則性和方向性變化即可改變使用功能,開發出如新型仿生智能可視保護硬膜等相關產品。

(以上新聞編譯自2015年11月20日發行之Science期刊)
(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/7/13

本單元學術名稱:生物醫農>動物學
標籤:智能可視保護硬膜仿生石鼈眼睛

資料來源:

Li, L., M. J. Connors, M. Kolle, G. T. England, D. I. Speciser, X. Xiao, J. Aizenberg, and C. Ortiz. 2015. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science, 350(6263): 952-956 (+ 27 pp. Supplementary Materials).

延伸學習:

Chandler. D. L. 2015. Armor plating with built-in transparent ceramic eyes: tiny sea creatures feature transparent optical systems as tough as their shells. MIT News, November 19, 2015.

de Lazaro, E. 2015. Chitons see with ceramic eyes, new research show. Sci-News / Biology, November 23, 2015.

Pennisi, E. 2015. Crystalline eyes of chitons inspire materials scientists: mollusk makes hundreds of eyes from shell mineral. Science, 350(6263): 899.

2017年7月10日 星期一

『臺博新知』:機械手臂吸頭仿生變色龍舌頭

賴婉婷/國立臺灣博物館研究組
歐陽盛芝/國立臺灣博物館
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士

歐洲科學家模仿高冠變色龍(Chamaeleo calyptratus)彈舌捕食和黏附機制,已研發出稱為FlexShapeGripper的仿生機械手臂吸頭,能像變色龍舌頭吸抓各種尺寸和類型物體、且不會造成物體受損,也可依設定流程吸取後重覆相同動作,最後放下數個不同形狀物件,可應用於農業的蔬果分級、資源回收業的廢棄物分類回收、提高吸取準確性與縮短流程的工業組裝、執行精密的自動化組裝或處理小零件等任務,未來還可開發為特定功能的機器人,從事較細緻和精確的客製化服務,並能依需求調整控制抓握和吸附程度,達到最大經濟效益。

仿生高冠變色龍舌頭的機械手臂吸頭可吸抓各種物體(繪製者:王美乃)。
高冠變色龍是日行性樹棲變色龍,最大特徵是頭頂具有由骨板構成的高聳頭冠,屬於爬蟲綱(Reptilia)有鱗目(Squamata)避役科(Chamaeleonidae),原產於阿拉伯半島的葉門和沙烏地阿拉伯的高原、山脈、和山谷。雜食性,以昆蟲為主食,也會取食植物吸收水分。變色龍的舌頭長度大於體長,捕食時會以超過F16戰鬥機5倍的加速度將舌頭瞬間彈射至體長2倍遠的距離黏住獵物,舌尖中間在碰到昆蟲前會停住回縮,舌頭邊緣繼續前進,讓舌頭適應各種獵物的尺寸和形狀、牢固地包圍,並分泌唾液將昆蟲黏附在舌頭上,從舌頭伸出到捕獲獵物的時間僅0.04-0.07秒,能黏獲重達本身體重30%的獵物回縮入口,當獵物想逃生時,就像釣魚線一樣拉扯、反而黏住更多接觸面積;舌頭表面粗糙度則必須自我調整,與獵物表面接觸形成物理交聯(physical crosslinks),並以類似橡膠吸盤的吸附機制進行強烈黏附,才能在高速彈射下立即黏住,具有不同體積和重量的獵物可在少於十分之一秒的舌頭縮回口中期間不會中途掉落。
變色龍的舌頭很長,能快速彈射黏住捕獲昆蟲進食(圖片來源:歐陽盛芝)。
美國布朗大學(Brown University)安德森(Christopher V. Anderson)博士因此比較55種變色龍取食蟋蟀時彈出舌頭的機制,得知拉伸彈性組織並使用其後座力驅動的力量,比收縮肌肉更直接更快速釋放能量,而將輸出功率放大,這種功率放大機制可讓高冠變色龍舌頭的峰值加速度達每平方秒514公尺,肌肉質量的峰值功率達每公斤3,480瓦特(W/kg);55種變色龍中,最高的舌頭峰值加速度可達每平方秒2,590公尺(m/sec2),肌肉質量的峰值功率最大達每公斤14,040瓦特,並且體型愈小其性能更好,舌頭彈射速度愈快,彈射距離愈長,最遠可達體長的2.5倍。

比利時科學家達曼(Pascal Damman)教授領導蒙斯大學(Université de Mons)和法國國立自然史博物館(Muséum national d’Histoire naturelle)合組研究團隊,研究結果顯示變色龍黏性唾液黏住獵物的機制、比高速彈舌機制對捕獲獵物更重要。研究團隊以直徑3.5公釐、質量0.175公克的不鏽鋼滾珠,用自由落體方式掉落在一塊表面沾塗高冠變色龍唾液薄層的小斜坡上進行實驗。當滾珠接觸到唾液時,係以每秒6.58±0.06公釐的速度滾動,再依滾動距離計算其黏度為0.4±0.1帕斯卡·秒(Pa·s = 10P,kg/m/s),因此計算出唾液黏度是人類(約10-3帕斯卡·秒)的400倍;他們另以高速攝錄高冠變色龍的捕食動作,係先估算距離後把舌頭慢慢從顎突出,加速肌肉收縮、並擠壓舌頭最內層的蛋白質纖維彈性鞘套,快速釋放能量彈出舌頭,以恆定速度延伸,撞到獵物前停止,黏到獵物即加速縮回口中,最後恢復原位,即使獵物較大,也能瞬間被唾液黏在舌頭上捕獲,黏度愈高則獵物被黏住的面積愈大,為相當有效的獵捕利器。研究成果於2016年6月在《自然物理學》(Nature Physics)期刊發表。

德國飛斯妥公司(Festo AG & Co. KG)仿生高冠變色龍彈舌捕食和黏附機制,研發出仿生機械手臂吸頭FlexShapeGripper,由挪威奧斯陸和阿克斯胡斯大學(Oslo and Akershus University)研究生蒙格紹(Jon Eirik Mangschau)協助設計,利用材料表面間產生高靜摩擦力形成的強抓吸力、替代黏度高的變色龍唾液,具有可旋轉彎折的關節,堅硬的機械手臂頂端是柔軟靈活、內部注水的矽膠帽,內有以活塞隔開的雙動氣缸,其中一個充滿壓縮空氣,另一個充滿水、由彈性矽膠製成仿生變色龍舌頭。

操作時透過處理系統引導矽膠帽接觸物體,將氣缸的氣體排放、打開活塞,造成含水氣缸自動向內拉,使矽膠帽能像變色龍舌頭般配合物體尺寸和形狀,柔性抓取各種物體並緊緊抓吸住,無論是眼鏡、鋼珠、咖啡杯、鑰匙等都能緊密纏繞包覆,依後進先出原則拾取、收集、和放下一個或幾個在相同生產線中不同形狀的物體,無須手動轉換流程操作或更換其他款機械手臂抓具,透過不同比例的閥門開關可精確控制矽膠帽的抓力和變形,且所有機制都由空氣觸發,無須額外提供能量,已成為可量產的經濟性商品。

(以上新聞編譯自2016年6月20日發行之Nature Physics期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/7/6

本單元學術名稱:生物醫農>動物學
標籤:機械手臂吸頭仿生變色龍舌頭

資料來源:

Brau, F., D. Lanterbecq, L.-N. Zghikh, V. Bels, and P. Damman. 2016. Dynamics of the prey prehension by chameleons through viscous adhesion: a multidisciplinary approach. Nature Physics, 12(10): 931-935.

延伸學習:

Anderson, C. V. 2016. Off like a shot: scaling of ballistic tongue projection reveals extremely high performance in small chameleons. Scientific Reports, 2016(12): 18625-1-9 (+ 7 pp. Supplementary Materials).

Festo AG & Co. KG. 2017. FlexShapeGripper: gripping modelled on a chameleon’s tongue. Festo Brochure (Visit date: 2017/06/12).

Radford, T. 2016. Lickety-split: smallest chameleons have fastest tongues. The Guardian / Science, January 4, 2016.

Veiled chameleon. 2017. Wikipedia, https://en.wikipedia.org/wiki/Veiled_chameleon (Visit date: 2017/06/12).


2017年7月3日 星期一

『臺博新知』:微型機械手仿生大壁虎足趾剛毛

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

美國與中國的科學家組成跨國團隊,研究大壁虎(Gekko gecko)足趾腹面剛毛(setae)的顯微構造、運動方式、黏附和自潔機制,發明仿生微型機械手(micromanipulator),具有超強黏附和自我清潔能力,不僅可執行微米尺度的自由操控,輕易達成從各種類型表面挑取微粒、移動、放入特定位置或容器,或是在產品製程中排組複雜圖案等精確組裝動作,還能根據需求設計製造特定形狀微球表面,並具再回收再利用特性。除可作為螺絲釘、膠帶、磁帶、繃帶等智能和防污表面外,還能開發攀爬機器人、微/奈米組裝、水中細胞操作技術、生物醫學裝置、和微機電系統裝置等,廣泛應用於能源、航空、化工、機械製造等領域,有發展為強大顯微操作工具的潛力。研究結果由北德克薩斯大學(University of North Texas)夏振海(Zhenhai Xia)教授和丹佛大學(University of Denver)、阿克隆大學(The University of Akron)、凱斯西儲大學(Case Western Reserve University)、北京中國石油大學、北京清華大學、陝西西北工業大學於2015年11月共同發表在《自然通訊》(Nature Communications)期刊。
仿生大壁虎足趾剛毛的微型機械手可自潔和超強黏附(繪製者:王美乃)。
大壁虎俗稱大守宮、蛤蚧、蛤蟹、仙蟾等,主要分布於亞洲東南部和南部,為棲息在岩洞或樹洞的夜行性動物,以昆蟲和其他小型動物為食。體長(吻肛長)約20-30公分,屬於爬蟲綱(Reptilia)有鱗目(Squamata)壁虎科(Gekkonidae)。前、後足共4隻,每隻足具5個足趾,趾腹具有10幾道排列整齊的脊狀皮瓣皺摺,成排長著稱為剛毛(setae)的角質毛(keratinous hairs),每隻足掌面積約227平方公釐(mm2),含有約50至數百萬根剛毛,排列密度為每平方公釐約14,400根剛毛,剛毛長約110微米(µm=10-6m)、直徑5微米,為人類頭髮直徑的十分之一左右;每根剛毛末端再分叉成100-1,000根刮勺狀構造的匙突(spatulae),長、寬均約200奈米(nm=10-9m)、厚約10奈米,頂端的匙突墊(spatula pad)直接與物體表面接觸,底部則與剛毛連接。
蓋勾亞守宮(Rhaoodactylus auriculatus)與大壁虎同科,趾腹也有剛毛(圖片來源:林士傑)。
大壁虎能在牆壁等垂直壁面來去自如,倒掛停留在天花板上不會掉落,原理係利用剛毛結構增強凡得瓦力(van der Waals forces),具有能支撐自身體重好幾倍的黏附力。研究團隊測試單根剛毛的黏附力約20微牛頓(µN=10−6N,1牛頓是使質量1公斤物體的加速度達每平方秒1公尺時所需的力量),可支撐一隻螞蟻體重,因此100萬根剛毛就能產生20牛頓的黏附力、支撐20公斤重量,而大壁虎體重只有幾十到100多公克,自身重力約3牛頓,故能無視地心引力,僅靠單足即可牢牢黏附。他們另外測試單根剛毛在不同表面的脫附力與分離速度,發現剛毛與物體表面接觸時,先施加15微牛頓的垂直力,使剛毛沿表面滑動約5微米,就會產生高達200微牛頓的剪切力量,並依然保持黏附。

由於大壁虎步行時的離地動作是先將足趾尖朝外翻,再將足掌外翻離開,因此能使足趾腹面剛毛與物體表面瞬間迅速分離。只要彎曲足趾就可變化剛毛的匙突和匙突墊間的夾角,形成黏附或分離,當夾角小於30度時會增強黏附力和摩擦力;當反向彎曲至近90度時,即可在十幾毫秒(ms=10-3s)內離開。此外,匙突墊的幾何形狀也是能快速離開接觸表面的因素之一,滴水試驗也證實濕度不會影響剛毛的黏附力。

研究團隊首度發現大壁虎的動態自潔機制,其可藉著足趾尖外翻時產生的瞬間分離速度和剪切速度會使塵垢脫落,四足運動時隨時自動高效率自我清潔,保持足趾乾淨,以具有最佳黏附力。他們以保麗龍(聚苯乙烯)、二氧化矽、氧化鋁三種材質製造平均直徑10微米的塵垢微球,散佈在玻璃、石英玻璃、雲母、藍寶石、保麗龍、鐵氟龍等表面上測試,結果發現塵垢微球以每秒約1,000-10,000 微米(μm/s)速度從剛毛的匙突墊甩落;增加分離速度和剪切速度會增強匙突黏附力。

因此研究團隊模仿大壁虎足趾剛毛結構,將直徑10微米、長度140微米的玻璃纖維,一端黏在原子力顯微鏡的懸臂頂端固定,以聚焦離子束(FIB)將另一端切割成匙狀,製成人造剛毛進行實驗及建模;再將一端有切割墊、直徑10微米、長度150微米的聚酯纖維黏在原子力顯微鏡的懸臂頂端固定,把單層石墨烯以環氧樹脂黏到切割墊上緩慢固化,重覆三次逐層黏合成厚5奈米、具三層石墨烯匙突墊的單根仿生微型機械手,甚至比天然剛毛具有更強的黏附能力和自潔功能。在小於每秒1微米的低分離速度和1.3微牛頓的相對高預負載條件時,塵垢微球的分離率為0-40%,但在約每秒1,000微米的垂直分離速度和約0.4微牛頓的低預負載時,分離率會迅速上升達約80%;當分離速度較低時,微型機械手可拾取微球,達高分離速度時即放下微球,因此調整分離速度就能夠控制動作,並能將直徑1-20微米的微尺寸微粒排列和精確組裝成特定圖案。

仿生微型機械手的耐久性測試則顯示,在1赫茲(Hz,每秒的週期運動次數)頻率和1微牛頓預載荷時,重複十萬次在玻璃基板進行黏附和脫落動作,功能仍然正常。石墨烯層還可顯著增強黏附能力、表面順應性、和接觸面積,產生可逆和可調整的黏附性,作為乾燥和潮濕環境下的各種應用。即使石墨烯匙突墊發生損壞,可再黏貼新的石墨烯層修復使用,因此未來將可廣泛應用。

(以上新聞編譯自2015年11月20日發行之Nature Communications期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/6/29

本單元學術名稱:生物醫農>動物學
標籤:微型機械手仿生大壁虎足趾剛毛

資料來源:

Xu, Q., Y. Wan, T. S. Hu, T. X. Liu, D. Tao, P. H. Niewiarowski, Y. Tian, Y. Liu, L. Dai, Y. Yang, and Z. Xia. 2015. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015(6): 8949-1-9 (+ 21 pp. Supplementary Information).

延伸學習:

大壁虎。2017。維基百科,https://zh.wikipedia.org/wiki/%E5%A4%A7%E5%A3%81%E8%
99%8E(瀏覽日期:2017/06/09)。

Autumn, K., Y. A. Llang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full. 2000. Adhesive force of a single gecko foot-hair. Nature, 405 (6787): 681-685.

Hansen, W. R. and K. Autumn. 2005. Evidence for self-cleaning in gecko setae. PNAS (Proceedings of National Academy of Sciences), 102(2): 385-389.

Sealy, C. 2016. Self-cleaning gecko feet inspire micromanipulator. Materials Today / Biomaterials / News, February 26, 2016.

2017年7月1日 星期六

『臺博新知』:仿生螞蟻(四):能飛會停兼爬牆的迷你機器人「SCAMP」

歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館
賴婉婷/國立臺灣博物館研究組

集結史丹佛大學十多年來的仿生、乾黏附、攀爬機器人、停棲(perching)等多項研究成果,克高斯基(Mark Cutkosky)教授的研究團隊今(2016)年3月在《科技綜覽》(IEEE Spectrum)雜誌,由博士生波普(Morgan Pope)公布一款稱為「史丹佛攀爬與飛行操控平台」(Stanford Climbing and Aerial Maneuvering Platform,簡稱SCAMP)的新型四軸飛行機器人,採用模仿螞蟻體型及團隊模式、壁虎足底剛毛結構、和尺蠖步態(gait)所開發,可負重超過體重百倍在垂直光滑牆面移動的9公克迷你機器人為主體,裝設四旋翼飛機(quadrotors),再添加仿生啄木鳥、盲蛛(daddy longlegs)、和蟑螂的構造,首創具備結合飛行、降落、停棲、攀爬等功能,當攀爬或停棲失敗時,還能立即恢復再次嘗試。算是既能飛上天空,又能在垂直牆壁降落,用有微棘刺的足抓住牆面停棲和攀爬,若不小心滑落還能夠再爬上牆的超級機器人。
仿生四軸飛行機器人SCAMP有飛行、降落、停棲、攀爬等功能(繪製者:黃正文)。
這款多功能仿生迷你機器人屬於微型飛行器(Micro Aerial Vehicles,簡稱MAVs),透過機載感應器和電腦控制,因體型很小,與空氣的相互作用較大,對接觸表面的黏附力更高,遭受碰撞時更穩定,可很快調整方向,且容易找到降落地點。但因電池容量小,目前僅能在小範圍內維持3分鐘飛行,但若中途停棲,續航力可長達2小時至數天。
黑棘蟻(Polyrhachis dives)會攀爬到植物上活動覓食(圖片來源:賴景陽)。
四軸飛行器(quadcopters)就是平時通稱的無人機(Drone),也稱為四旋翼飛機,受電池容量和小規模飛行的物理性限制,續航力很短,能準確安全降落的機率很低,消費型無人機航程僅能維持在30分鐘以內,若安裝額外的感測器或視訊攝影鏡頭,會因耗電而縮短飛行時間及距離,失去動力時可能突然墜落,造成安全問題及經濟損失。因此無人機的停棲和降落技術仍存在許多難題,而此款SCAMP已達成能安全降落,延長操作時間從數小時至數天,並在靜止時執行數據收集或通訊任務。

SCAMP是將可負重超過積體重量百倍在垂直光滑牆面移動攀爬的9公克迷你機器人,加裝德國製造的小型蜂鳥四旋翼飛機(Hummingbird quadrotor)用以飛行,另模仿啄木鳥啄木時用來平衡的尾巴,在機器人後端加裝一個剛性尾巴平衡重量,有利於降落後平穩停棲。由於在戶外要找到合適降落地點的機率很小,SCAMP的攀爬能力有助於在垂直牆壁降落,迷你機器人會先以尾部飛向牆壁,頭部朝上,當機載加速度感應器(onboard accelerometers)檢測到撞擊,就會開啟回轉軸(rotors)使推力最大化,利用空氣動力推動機體壓在牆面上,讓機體和長足向牆壁黏附,直到撞擊振動平息,然後足的微棘刺(microspines)會接觸嚙合牆面,SCAMP的回轉軸關閉並開始攀爬。

迷你機器人SCAMP需要可操作性而非負重能力,因此修改設計讓足更細長且步幅更大;其攀爬機制重量僅有11公克,一雙細長輕巧的長足以碳纖維(carbon fiber)和高強輕質彈性線(Spectra,PE編織線)模仿盲蛛的長足製造,重量輕、且功率損耗低,有助於飛向和遠離牆面,長足末端底座加裝含數十萬個微形錐體(microwedge)玻璃纖維黏片和模仿蟑螂足上棘刺(spines)所研發「微棘刺」(microspines)結構,確保SCAMP能黏附和攀爬任何材質表面;步幅從每步1.2公分增加到9公分,由高扭矩密度(torque-density)伺服器驅動,另一個更小的伺服器則驅動定向黏附和離開接觸表面,在兩足間交替負載荷重策略。機器人的碳纖維框架另一端連接兩個輪子和一個具黏片和微棘刺結構的起飛臂,均能輔助攀爬功能。微棘刺是一種硬質鋼倒鉤盤形裝置,不僅增強吸附力,並可扣住混凝土般堅硬粗糙表面垂直攀爬,甚至能讓機器人像蝙蝠一樣倒吊在天花板上。

因粗糙的水泥或灰泥牆面不像平滑的玻璃窗那樣表面平整,且不可預測,但具有攀爬能力的SCAMP,能更準確飛抵目的地且精準的重新定位;若因故喪失黏附力向下跌落時,加速度感應器偵測到突發的垂直加速度,就會暫時開啟回轉軸,將機器人推回牆面,重新穩定後再恢復攀登或至固定位置停棲;即使遭遇不適合飛行的強風時,也能攀爬到預定地點降落、停棲、和執行任務。

四軸飛行器能到達人類不宜或不能去的地方,2011年3月11日日本311大地震導致福島核災後,科學家就曾組成無人機群進入位於仙臺的東北大學(Tohoku University)校區內進行災後地圖繪製及損失評估作業。因此可以預期新型四軸飛行機器人的應用將更為廣泛,不但可在戰場或救災中發揮作用,也可搭載熱成像儀、高解析度畫質影像採集設備等精密儀器,實現遠端實況監控,並可立刻傳回現場圖像至指揮中心,提供即時的空中全方位立體影像,利於現場指揮員作出更為有利的決策依據。許多任務其實無須機器人持續飛行或運動,只需停棲狀態即可達成,例如在災區定點作為無線電中繼站執行通訊任務,或在定點收集、拍攝、紀錄相關資料或數據等,甚至在不利飛行的天氣時可暫停運作,待天氣好轉時再恢復功能。

研究團隊希望體型小、可靈活執行任務的迷你機器人SCAMP,未來也能像螞蟻發揮團隊合作的集群(swarm)功能,即使其中有幾個機器人失敗,可繼續工作而不會影響成果,甚至能完成單一個體無法勝任的任務。

(以上新聞編譯自2016年3月16日發行之IEEE Spectrum雜誌等)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/5/18

本單元學術名稱:生物醫農>動物學
標籤:仿生螞蟻(四):能飛會停兼爬牆的迷你機器人「SCAMP」

資料來源:

Pope, M. 2016. Stanford's flying, perching SCAMP robot can climb straight up walls. IEEE Spectrum / Automaton / Robotics / Drones, March 16, 2016.

Pope, M. 2016. SCAMP: the Stanford climbing and aerial maneuvering platform. Biomimetics and Dexterous Manipulation Laboratory / Stanford / Main / SCAMP, April 7, 2016.

延伸學習:

Asbeck, A. T., S. Kim, M. R. Cutkosky, W. R. Provancher, and M. Lanzetta. 2006. Scaling hard vertical surfaces with compliant microspine arrays. International Journal of Robotics Research, 25(12): 1165-1179.

Hawkes, E. W., D. L. Christensen, and M. R. Cutkosky. 2015. Vertical dry adhesive climbing with a 100x bodyweight payload. in 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE 2015, 3762-2769.

Michael, N., S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohho, E. Takeuchi, and S. Tadokoro. 2012. Collaborative mapping of an earthquake-damaged building via ground and aerial robots. Journal of Field Robotics, 29(5): 832-841.

Spenko, M. J., G. C. Haynes, J. A. Saunders, M. R. Cutkosky, and A. A. Rizzi. 2008. Bio.logically inspired climbing with a hexapedal robot. Journal of Field Robotics, 25(4-5): 223-242.

Thomas, J., G. Loianno, M. Pope, E. W. Hawkes, M. A. Estrada, H. Jiang, M. R. Cutkosky, and V. Kumar. 2015. Planning and control of aggressive maneuvers for perching on inclined and vertical surfaces. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5C: V05CT08A012-1-10.

Thomas, J., M. Pope, G. Loianno, E. W. Hawkes, M. A. Estrada, H. Jiang, M. R. Cutkosky, and V. Kumar. 2016. Aggressive flight with quadrotors for perching on inclined surfaces. Journal of Mechanisms and Robotics, 8(5): 051007-1-10.

最新留言

追蹤者

搜尋此網誌